Termination Analysis of Quantum Programs

Yangjia Li, University of Tartu, Estonia

Joint work with Prof. Mingsheng Ying at University of Technology, Sydney, Australia

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 1 / 38

- Introduction: program termination problems
- Formalization: quantum programs and their termination
- Result I: decidability for finite-dimensional programs
- Result II: LRSM-based approach for general programs
- Summary

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 2 / 38

Introduction

Termination problems

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 3 / 38

- Program termination is generally undecidable. (Halting problem)
- Incomplete approaches for positive results:
 - -Linear Program, e.g. [Tiwari, CAV'04]
 - -Multi-path Polynomial Program, e.g. [Bradley et al, VMCAI'05]
 - -Predicate abstraction, e.g. [P. Cousot & R. Cousot, POPL'12]
 - -Ranking functions, plenty of results, traced back to [Floyd, 1967]
- Boundary: hard even for some simple programs.

An open problem

• Termination problem of linear while-loop:

while $x_1 > 0$ do $\boldsymbol{x} := A\boldsymbol{x}$ od

where $\boldsymbol{x} \in \mathbb{R}^6$ and A is a 6×6 real matrix.

An open problem

• Termination problem of linear while-loop:

while $x_1 > 0$ do $\boldsymbol{x} := A\boldsymbol{x}$ od

where $\boldsymbol{x} \in \mathbb{R}^6$ and A is a 6×6 real matrix.

• Computation of the Homogeneous Diophantine Approximation Type:

$$L(x) = \inf \left\{ c \in \mathbb{R} : \left| x - \frac{n}{m} \right| < \frac{c}{m^2} \text{ for some } n, m \in \mathbb{Z} \right\}$$

An open problem

• Termination problem of linear while-loop:

while $x_1 > 0$ do $\boldsymbol{x} := A\boldsymbol{x}$ od

where $\boldsymbol{x} \in \mathbb{R}^6$ and A is a 6×6 real matrix.

• Computation of the Homogeneous Diophantine Approximation Type:

$$L(x) = \inf \left\{ c \in \mathbb{R} : \left| x - \frac{n}{m} \right| < \frac{c}{m^2} \text{ for some } n, m \in \mathbb{Z} \right\}$$

Reduction [Ouaknine and Worrell, SODA'14]: (1) ⇒ (2).
(1) Decidability of the termination problem;
(2) Computability of L(x) for a set of transcendental numbers x:

$$X = \left\{ \frac{\arg(p + \mathrm{i}q)}{2\pi} : p, q \in \mathbb{Q}, p, q \neq 0 \text{ and } p^2 + q^2 = 1 \right\}.$$

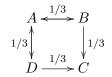
Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 5 / 38

- Motivation: verification of quantum programs, just like classical case.
 -In quantum Hoare logic [Ying, TOPLAS 33(2011),19] total correctness = partial correctness + termination analysis
- Method: quantum generalization of classical techniques
- Novelty: fundamental differences between classical and quantum.

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 6 / 38

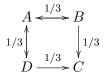
Example: A simple quantum walk

• Consider a random walk on a square *ABCD* starting at vertex *A* and terminating at vertex *C*. Then it terminates with probability 1.



Example: A simple quantum walk

• Consider a random walk on a square *ABCD* starting at vertex *A* and terminating at vertex *C*. Then it terminates with probability 1.



• Consider a quantum version of the walk: unitary operations W_1 and W_2 are alternatingly taken during the process. Then it terminates with probability 0.

$$W_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 0 & -1\\ 1 & -1 & 1 & 0\\ 0 & 1 & 1 & 1\\ 1 & 0 & -1 & 1 \end{pmatrix}, \quad W_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 0 & 1\\ -1 & 1 & -1 & 0\\ 0 & 1 & 1 & -1\\ 1 & 0 & -1 & -1 \end{pmatrix}$$

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 7 / 38

Formalisation

Quantum programs and termination problems

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 8 / 38

Syntax of quantum programs

Grammar of quantum while-programs (with nondeterminism)

$$P ::= \mathbf{skip} \mid P_1; P_2 \mid q := |0\rangle \mid \overline{q} := U\overline{q}$$
(1)

if
$$(\Box_m \ M[\overline{q}] = m \to P_m)$$
 fi

while
$$M[\overline{q}] = 1$$
 do P od

$$|P_1 \sqcup P_2 | P_1 \sqcap P_2 | P_1 \parallel P_2 \tag{4}$$

(2) (3)

Syntax of quantum programs

Grammar of quantum while-programs (with nondeterminism)

$$P ::= \mathbf{skip} \mid P_1; P_2 \mid q := |0\rangle \mid \overline{q} := U\overline{q}$$
(1)

$$| \mathbf{if} \ (\Box_m \ M[\overline{q}] = m \to P_m) \mathbf{fi}$$
 (2)

while
$$M[\overline{q}] = 1$$
 do P od (3)

$$P_1 \sqcup P_2 \mid P_1 \sqcap P_2 \mid P_1 \parallel P_2 \tag{4}$$

- Sequential quantum while-program with extension in (4)
- In (1), skip command and sequential composition are just as the same as in the classical case; quantum initialization and unitary transformation form quantum counterpart of the classical assignment command.
- (2) is the quantum case statement, and (3) is the quantum while-loop, in both of which probabilistic choices are involved. (According to the Copenhagen interpretation.)
- (4) defines structures about nondeterminism: angelic choice, demonic choice and parallel composition, just like the classical programs.

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 9 / 38

Operational Semantics

Probabilistic transitions of while-loop:

 $\langle \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ P \ \mathbf{od}, \rho \rangle \xrightarrow{\mathcal{M}_0} \langle \downarrow, M_0 \rho M_0^{\dagger} \rangle, \\ \langle \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ P \ \mathbf{od}, \rho \rangle \xrightarrow{\mathcal{M}_1} \langle P; \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ P \ \mathbf{od}, M_1 \rho M_1^{\dagger} \rangle$

Operational Semantics

Probabilistic transitions of while-loop:

 $\langle \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ P \ \mathbf{od}, \rho \rangle \xrightarrow{\mathcal{M}_0} \langle \downarrow, M_0 \rho M_0^{\dagger} \rangle, \\ \langle \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ P \ \mathbf{od}, \rho \rangle \xrightarrow{\mathcal{M}_1} \langle P; \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ P \ \mathbf{od}, M_1 \rho M_1^{\dagger} \rangle$

Other transitions:

$$\begin{split} \langle \mathbf{skip}, \rho \rangle \xrightarrow{\mathcal{I}} \langle \downarrow, \rho \rangle, \ \langle \overline{q} := U\overline{q}, \rho \rangle \xrightarrow{\mathcal{U}} \langle \downarrow, U\rho U^{\dagger} \rangle, \\ \langle q := 0, \rho \rangle \xrightarrow{|0\rangle_q \langle 0| \otimes tr_q} \langle \downarrow, |0\rangle_q \langle 0| \otimes tr_q(\rho) \rangle \\ \langle \mathbf{if} \ (\Box_m \ M[\overline{q}] = m \to P_m) \ \mathbf{fi}, \rho \rangle \xrightarrow{\mathcal{M}_m} \langle P_m, M_m \rho M_m^{\dagger} \rangle \ \forall m. \\ \langle P_1 \sqcup P_2, \rho \rangle \xrightarrow{\mathcal{I}}_{\sqcup} \langle P_1, \rho \rangle, \ \langle P_1 \sqcup P_2, \rho \rangle \xrightarrow{\mathcal{I}}_{\sqcup} \langle P_2, \rho \rangle, \\ \langle P_1 \sqcap P_2, \rho \rangle \xrightarrow{\mathcal{I}}_{\sqcap} \langle P_1, \rho \rangle, \ \langle P_1 \sqcap P_2, \rho \rangle \xrightarrow{\mathcal{I}}_{\to \square} \langle P_2, \rho \rangle \\ \frac{\langle P_1, \rho \rangle \xrightarrow{\mathcal{M}} \langle P_1', \rho' \rangle}{\langle P_1 \parallel P_2, \rho' \rangle}, \ \frac{\langle P_2, \rho \rangle \xrightarrow{\mathcal{M}} \langle P_1 \parallel P_2', \rho' \rangle}{\langle P_1 \parallel P_2, \rho \rangle \xrightarrow{\mathcal{M}}_{\sqcap} \langle P_1 \parallel P_2', \rho' \rangle} \end{split}$$

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 10 / 38

Denotational Semantics

State transformation: $\rho_{out} = \llbracket P \rrbracket(\rho_{in})$

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 11 / 38

State transformation: $\rho_{out} = \llbracket P \rrbracket(\rho_{in})$

- Nondeterministic choices are made according to the history by an angelic scheduler σ and a demonic scheduler τ .
- Then the execution path p follows from the probabilistic choices:

$$p = \langle P_0, \rho_0 \rangle \xrightarrow{\mathcal{E}_1} \cdots \xrightarrow{\mathcal{E}_n} \langle P_n, \rho_n \rangle.$$

Define $\llbracket p \rrbracket = \mathcal{E}_n \circ \cdots \circ \mathcal{E}_1$.

$$[\![P(\sigma,\tau)]\!] = \sum_{p \in Path(\sigma,\tau)} [\![p]\!],$$

where $Path(\sigma, \tau)$ is the set of all paths p with $P_0 = P$ and $P_n = \downarrow$, under an angelic scheduler σ and a demonic scheduler τ .

For a quantum prgram P and an input state $\rho,$ define

• Termination probability:

$$TP_{\sigma,\tau}(\rho) = tr(\llbracket P(\sigma,\tau) \rrbracket(\rho_{in})).$$

• Expected running time: if $TP_{\sigma,\tau}(\rho) < 1$, $ET_{\sigma,\tau}(\rho) = \infty$; otherwise,

$$ET_{\sigma,\tau}(\rho) = \sum_{T=0}^{\infty} tr(\llbracket P_T(\sigma,\tau) \rrbracket(\rho)) \times T,$$

where $\llbracket P_T(\sigma, \tau) \rrbracket = \sum \{\llbracket p \rrbracket \mid p \in Path(\sigma, \tau), |p| = T\}.$

Definition I (Almost-sure termination)

A quantum program S is almost-surely terminating under input $\rho,$ if

$$\exists \sigma \ \forall \tau. \ TP_{\sigma,\tau}(\rho) = 1.$$
(5)

Definition II (Finite termination)

A quantum program S is finitely terminating under input ρ_{in} , if

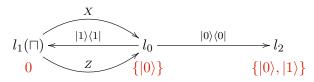
$$\exists \sigma \ \forall \tau. \ ET_{\sigma,\tau}(\rho) < \infty.$$
(6)

Result I

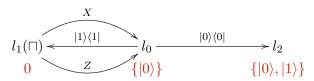
Decidability for finite-dimensional programs

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 14 / 38

• Program: while M[q] = 1 do $q := X[q] \sqcap q := Z[q]$ od



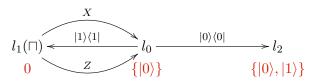
• Program: while M[q] = 1 do $q := X[q] \sqcap q := Z[q]$ od



• Note: terminating subspaces form an invariant of the program.

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 15 / 38

• Program: while M[q] = 1 do $q := X[q] \sqcap q := Z[q]$ od



- Note: terminating subspaces form an invariant of the program.
- Difficulty in invariant generation: nontrivial invariant (neither I nor 0).

Result description

Theorem I (Computability of S_{in})

Given a finite-dimensional quantum program P, the set

$$S_{in} = \{ |\psi\rangle : \exists \sigma. \forall \tau. \, TP_{\sigma,\tau}(|\psi\rangle\langle\psi|) = 1 \}$$

of terminating initial pure states is computable.

Theorem I (Computability of S_{in})

Given a finite-dimensional quantum program \boldsymbol{P} , the set

$$S_{in} = \{ |\psi\rangle : \exists \sigma. \forall \tau. TP_{\sigma,\tau}(|\psi\rangle \langle \psi|) = 1 \}$$

of terminating initial pure states is computable.

- A.S.T \Leftrightarrow F.T for finite-dimensional programs.
- Termination is decidable by checking $\operatorname{supp}(\rho_{in}) \in S$, where
 - **1** Without angelic choice, S_{in} is the subspace S;
 - 2 With angelic choice, S_{in} would be a finite union of different subspaces due to different angelic strategy σ , then S can be any one of them.
- It is a generalization of our previous result for nondeterministic quantum loops. [Li et al, Acta Inform. 51(2015),1]

Lemma I (Generalized 0-1 Law)

Let X be an invariant subspace of a quantum Markov chain possibly with demonic choice, and $T(\rho)$ the termination probability starting from a state ρ , then

$$\inf_{\psi \in X} T(|\psi\rangle \langle \psi|) = 0 \text{ or } 1.$$

Lemma I (Generalized 0-1 Law)

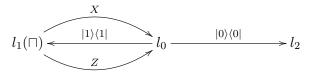
Let X be an invariant subspace of a quantum Markov chain possibly with demonic choice, and $T(\rho)$ the termination probability starting from a state ρ , then

$$\inf_{\psi \in X} T(|\psi\rangle \langle \psi|) = 0 \text{ or } 1.$$

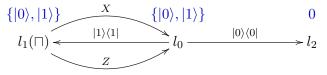
- In finite-dimensional case, infimum 0 is always reachable, but by a trickier proof than the classical case.
- The set of diverging states: $D_l = \{|\psi\rangle : T_l(|\psi\rangle\langle\psi|) = 0\}.$
- Condition for generation of termination subspaces: $S_l \cap D_l = 0$.

- $\{D_l\}_l$ is the greatest fixed point under some transition relation.
- Algorithm: Generate $\{D_l\}_l$ firstly, and then $\{S_l\}_l$ accordingly.

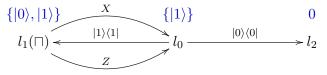
- $\{D_l\}_l$ is the greatest fixed point under some transition relation.
- Algorithm: Generate $\{D_l\}_l$ firstly, and then $\{S_l\}_l$ accordingly.
- Example: while M[q] = 1 do $q := X[q] \ \sqcap \ q := Z[q]$ od



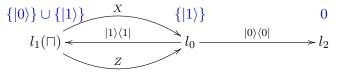
- $\{D_l\}_l$ is the greatest fixed point under some transition relation.
- Algorithm: Generate $\{D_l\}_l$ firstly, and then $\{S_l\}_l$ accordingly.
- Example: while M[q] = 1 do $q := X[q] \sqcap q := Z[q]$ od



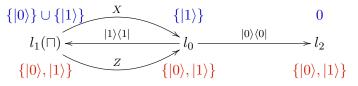
- $\{D_l\}_l$ is the greatest fixed point under some transition relation.
- Algorithm: Generate $\{D_l\}_l$ firstly, and then $\{S_l\}_l$ accordingly.
- Example: while M[q] = 1 do $q := X[q] \sqcap q := Z[q]$ od



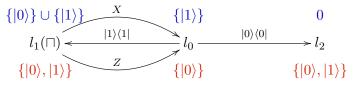
- $\{D_l\}_l$ is the greatest fixed point under some transition relation.
- Algorithm: Generate $\{D_l\}_l$ firstly, and then $\{S_l\}_l$ accordingly.
- Example: while M[q] = 1 do $q := X[q] \sqcap q := Z[q]$ od



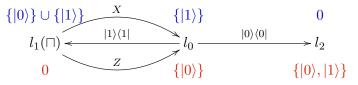
- $\{D_l\}_l$ is the greatest fixed point under some transition relation.
- Algorithm: Generate $\{D_l\}_l$ firstly, and then $\{S_l\}_l$ accordingly.
- Example: while M[q] = 1 do $q := X[q] \ \sqcap \ q := Z[q]$ od



- $\{D_l\}_l$ is the greatest fixed point under some transition relation.
- Algorithm: Generate $\{D_l\}_l$ firstly, and then $\{S_l\}_l$ accordingly.
- Example: while M[q] = 1 do $q := X[q] \ \sqcap \ q := Z[q]$ od



- $\{D_l\}_l$ is the greatest fixed point under some transition relation.
- Algorithm: Generate $\{D_l\}_l$ firstly, and then $\{S_l\}_l$ accordingly.
- Example: while M[q] = 1 do $q := X[q] \sqcap q := Z[q]$ od



Lemma II (Descending Chain Condition)

In a finite-dimensional Hilbert space, a descending chain

$$S_1 \supseteq S_2 \supseteq \cdots \supseteq S_k \supseteq \cdots$$

always terminates at some S_n , i.e., $S_m = S_n$ for all m > n, if each S_k is a finite union of subspaces.

Lemma II (Descending Chain Condition)

In a finite-dimensional Hilbert space, a descending chain

$$S_1 \supseteq S_2 \supseteq \cdots \supseteq S_k \supseteq \cdots$$

always terminates at some S_n , i.e., $S_m = S_n$ for all m > n, if each S_k is a finite union of subspaces.

- A consequence of Hilbert's basis theorem.
- Particularly used here for generation of finite union D_l of subspaces.
- An Ackermannian function A(d, n) w.r.t. the dimension d and the program size n can be found as a complexity upper bound.

Result II

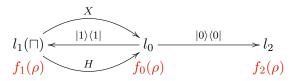
An LRSM-based approach

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 26 / 38

- The notion of Ranking Super-Martingale (RSM) has been introduced in the study of probabilistic programs, and successfully used for termination analysis of them. [Fioriti & Hermanns, POPL'15], [Chatterjee et al, POPL'16]
- We introduce the notion of Linear Ranking Super-Martingale (LRSM) as a quantum generalization of RSM, and apply it to termination analysis for quantum programs. [Li & Ying, POPL'18]

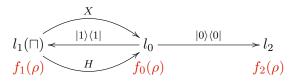
An illustrative example

• Program: while M[q] = 1 do $q := X[q] \sqcap q := H[q]$ od



An illustrative example

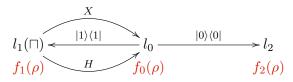
• Program: while M[q] = 1 do $q := X[q] \ \sqcap \ q := H[q]$ od



• Constraint: for all density operators ρ , (1) $f_0(\rho), f_1(\rho), f_2(\rho) \ge K$; (2) $f_1(\rho) \ge f_0(X\rho X) + \epsilon$, $f_1(\rho) \ge f_0(H\rho H) + \epsilon$, and $f_0(\rho) \ge f_2(\rho_{00} \cdot |0\rangle\langle 0|) + f_1(\rho_{11} \cdot |1\rangle\langle 1|) + \epsilon$.

An illustrative example

• Program: while M[q] = 1 do $q := X[q] \ \sqcap \ q := H[q]$ od

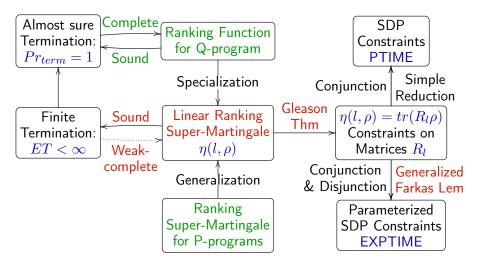


- Constraint: for all density operators ρ , (1) $f_0(\rho), f_1(\rho), f_2(\rho) \ge K$; (2) $f_1(\rho) \ge f_0(X\rho X) + \epsilon$, $f_1(\rho) \ge f_0(H\rho H) + \epsilon$, and $f_0(\rho) \ge f_2(\rho_{00} \cdot |0\rangle\langle 0|) + f_1(\rho_{11} \cdot |1\rangle\langle 1|) + \epsilon$.
- Solution: choose $\epsilon = 0.5$, $K = f_2(\rho) = 0$, $f_0(\rho) = tr(A\rho)$, It suffices to find an operator A such that

$$0 \sqsubseteq A \land \max\{\langle 0|A|0\rangle, \langle -|A|-\rangle\} \cdot |1\rangle\langle 1| + I \sqsubseteq A.$$

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 28 / 38

Overview



A (K, ϵ) -Linear Ranking Super-Martingale for a quantum program P with respect to an invariant $\{O_l\}_{l \in L}$ is a function $\eta : L \times \mathcal{D}(\mathcal{H}) \to \mathbb{R}$ satisfying:

- 1 Linearity: $\eta(l, p\rho + q\sigma) = p\eta(l, \rho) + q\eta(l, \sigma)$
- 2 K-lower bounded: $\eta(l,\rho) \ge K + tr(O_l\rho) 1$
- **3** ϵ -decreasing: $\eta(l,\rho) pre_{\eta}(l,\rho) \ge \epsilon + tr(O_l\rho) 1$

for all $l \in L$, density operators ρ and σ , and $p, q \ge 0$.

A (K, ϵ) -Linear Ranking Super-Martingale for a quantum program P with respect to an invariant $\{O_l\}_{l \in L}$ is a function $\eta : L \times \mathcal{D}(\mathcal{H}) \to \mathbb{R}$ satisfying:

- 1 Linearity: $\eta(l, p\rho + q\sigma) = p\eta(l, \rho) + q\eta(l, \sigma)$
- 2 K-lower bounded: $\eta(l,\rho) \ge K + tr(O_l\rho) 1$
- **3** ϵ -decreasing: $\eta(l,\rho) pre_{\eta}(l,\rho) \ge \epsilon + tr(O_l\rho) 1$

for all $l \in L$, density operators ρ and σ , and $p, q \ge 0$.

- L is the set of instructions and \mathcal{H} is the state space of P;
- The pre-expectation of η is defined for a regular (resp. angelic, demonic) instruction l as

$$pre_{\eta}(l,\rho) = \Delta\{\eta(l',\rho') \mid (l,\rho) \to (l',\rho')\},\$$

where $\Delta = \Sigma$ (resp. min, max).

Termination theorems

Theorem I (Termination under additive invariants)

If a quantum program P has a $(K,\epsilon)\text{-LRSM},$ then it is finitely terminating with any input satisfying $tr(O_{in}\rho_{in})=1$, and

$$ET \le \frac{\eta(l_{in}, \rho_{in}) - K}{\epsilon}$$

• Proved in a similar but somehow different way to the probabilistic case.

Theorem II (Termination under multiplicative invariants)

If a quantum program P has a (K, ϵ) -LRSM w.r.t. a multiplicative invariant $\{O_l\}_l$, then it is finitely terminating with any input satisfying $tr(O_{in}\rho_{in}) > 1 - \epsilon$, and

$$ET \le \frac{\eta(l_{in}, \rho_{in}) - K + 1 - tr(O_{in}\rho_{in})}{\epsilon + tr(O_{in}\rho_{in}) - 1}$$

• Proved by reduction to the (classical) Foster Theorem

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 31 / 38

Theorem III (Weak completeness)

A deterministic quantum program S is finite terminating for every input iff it has a (0,1)-LRSM with respect to the trivial invariant.

- Proof: LRSM can be constructed from the ET.
- Weakness: With nondeterministic choice ET may be non-linear.
- Special case: Quantum Markov Chain.
- A quantum generalization of the Foster Theorem on classical Markov chain.

Gleason Theorem

If \mathcal{H} is separable and $\dim \mathcal{H} > 2$, then for each measure m on $\mathcal{S}(\mathcal{H})$, there exists a unique positive Hermitian matrix R with tr(R) = 1 such that

$$m(X) = tr(RP_X)$$

for all $X \in \mathcal{S}(\mathcal{H})$, where P_X is the project onto X.

- Absence of angelic choice ⇒ conjunction form ⇒ SDP problem SDP constraints on R_l: ∑_l A_l(R_l) ⊒ C.
- Difficulty: Angelic choice ⇒ disjunction form, e.g.,

$$\forall \rho \in \mathcal{D}(\mathcal{H}). \max\{\sum_{l} tr(\rho \mathcal{A}_{l}(R_{l})), \sum_{l} tr(\rho \mathcal{B}_{l}(R_{l}))\} \geq tr(\rho C).$$

LRSM synthesis with angelic choice

Generalized Farkas Lemma for SDP

Let H_1, \dots, H_n be a finite number of Hermitian operators in a finitely dimensional Hilbert space \mathcal{H} . Then the following two statements are equivalent:

- 1 For any $\rho \in \mathcal{D}(\mathcal{H})$, $\bigvee_k (tr(\rho H_k) > 0)$;
- 2 There exist non-negative numbers $p_1 \ge 0, \cdots, p_n \ge 0$, such that $p_1 + \cdots + p_n > 0$ and $p_1H_1 + p_2H_2 + \cdots + p_nH_n \sqsupset 0$.

Generalized Farkas Lemma for SDP

Let H_1, \dots, H_n be a finite number of Hermitian operators in a finitely dimensional Hilbert space \mathcal{H} . Then the following two statements are equivalent:

1 For any $\rho \in \mathcal{D}(\mathcal{H})$, $\bigvee_k (tr(\rho H_k) > 0)$;

2 There exist non-negative numbers $p_1 \ge 0, \cdots, p_n \ge 0$, such that $p_1 + \cdots + p_n > 0$ and $p_1H_1 + p_2H_2 + \cdots + p_nH_n \sqsupset 0$.

• Application: parameterized SDP form, e.g.,

$$\sum_{l} (p\mathcal{A}_{l} + q\mathcal{B}_{l})(R_{l}) \sqsupseteq C \text{ for some } p, q \ge 0, p + q = 1.$$

• Parameterized SDP w.r.t. any error in EXPTIME.

	Probabilistic	Quantum
The General Problem	PSPACE	2-EXPTIME by QE with CAD
Without Angelic Choice	PTIME	PTIME w.r.t. an error
With Angelic Choice	NP-hard	EXPTIME w.r.t. an error

Summary

Riga, Oct. 12, 2018 · Li: Termination of Q-Programs · 36 / 38

- A nontrivial proof of decidability for finite-dimensional case.
- The LRSM-based approach for termination analysis.
- Some useful techniques: quantum generalizations of 0-1 Law and of Farkas lemma, and the application of Gleason theorem.

- Implementation in current quantum programming platforms.
- More efficient algorithms and better complexity upper bounds.
- Termination problems in expectation based QRHL.
- Relations to other problems in quantum theory: reachability analysis, quantum automata, measurement occurrence, etc.