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Introduction: program termination problems

Formalization: quantum programs and their termination

Result I: decidability for finite-dimensional programs

Result 1I: LRSM-based approach for general programs

Summary
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Introduction

Termination problems

Riga, Oct.12, 2018 - Li: Termination of Q-Programs - 3 / 38



Termination analysis of classical programs

e Program termination is generally undecidable. (Halting problem)

e Incomplete approaches for positive results:
-Linear Program, e.g. [Tiwari, CAV'04]
-Multi-path Polynomial Program, e.g. [Bradley et al, VMCAI'05]
-Predicate abstraction, e.g. [P. Cousot & R. Cousot, POPL'12]
-Ranking functions, plenty of results, traced back to [Floyd, 1967]

e Boundary: hard even for some simple programs.
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An open problem

e Termination problem of linear while-loop:
while z1 > 0 do z := Az od

where 2 € R and A is a 6 x 6 real matrix.
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An open problem

e Termination problem of linear while-loop:
while z1 > 0 do z := Az od

where 2 € R and A is a 6 x 6 real matrix.

e Computation of the Homogeneous Diophantine Approximation Type:

L(az):inf{ceR: ’x—ﬁ‘ <%forsomen,m€Z}
ml ~m

Riga, Oct.12, 2018 - Li: Termination of Q-Programs - 5 / 38



An open problem

e Termination problem of linear while-loop:
while 1 > 0 do z := Ax od
where 2 € R and A is a 6 x 6 real matrix.

e Computation of the Homogeneous Diophantine Approximation Type:

L(az):inf{ceR: ‘x—ﬁ‘ <%forsomen,m€Z}
ml ~m

e Reduction [Ouaknine and Worrell, SODA'14]: (1) = (2).
(1) Decidability of the termination problem;
(2) Computability of L(z) for a set of transcendental numbers z:

¥ _ {arg(p + iq)

1t 3p»q€@»p7Q7é03ndp2+q2:1}.
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Termination analysis of quantum programs

e Motivation: verification of quantum programs, just like classical case.
-In quantum Hoare logic [Ying, TOPLAS 33(2011),19]

total correctness = partial correctness + termination analysis
e Method: quantum generalization of classical techniques

e Novelty: fundamental differences between classical and quantum.
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Example: A simple quantum walk

1/3
. A<—B
e Consider a random walk on a square ABCD
starting at vertex A and terminating at vertex 1/3[ 1/3
C. Then it terminates with probability 1. D 1/3 C
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Example: A simple quantum walk

1/3
e Consider a random walk on a square ABCD 4 B
starting at vertex A and terminating at vertex 1/3[ 1/3
C. Then it terminates with probability 1. D 1/3 C

e Consider a quantum version of the walk: unitary operations W; and
W are alternatingly taken during the process. Then it terminates with

probability 0.
1 1 0 -1 1 1 0 1
111 -1 1 0 1| -11 -1 0
Wl_ﬁ 01 1 1 | vl o1 1 1
1 0 -1 1 1 0 -1 -1
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Formalisation

Quantum programs and termination problems

Riga, Oct.12, 2018 - Li: Termination of Q-Programs - 8 / 38



Syntax of quantum programs

Grammar of quantum while-programs (with nondeterminism)

Pu= skip | Pi; P2 | q:=(0) | g:=Ug (1
| if (O, M[gl=m — Py,) fi (2
| while M[q] =1 do P od 3
| PLUP, | PiTIPy | Py || P2 (4

)
)
)
)
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Syntax of quantum programs

Grammar of quantum while-programs (with nondeterminism)

Pu= skip | Pi; 2 [ ¢:=10) [g:=Ug (1)
| if (O, M[gl=m — Py,) fi (2)
| while M[q] =1 do P od (3)
|PLUP, | PTIP | P || P, (4)

e Sequential quantum while-program with extension in (4)

e In (1), skip command and sequential composition are just as the
same as in the classical case; quantum initialization and unitary
transformation form quantum counterpart of the classical assignment
command.

e (2) is the quantum case statement, and (3) is the quantum
while-loop, in both of which probabilistic choices are involved.
(According to the Copenhagen interpretation.)

e (4) defines structures about nondeterminism: angelic choice, demonic

choice and parallel composition, just like the classical programs.
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Operational Semantics

Probabilistic transitions of while-loop:

(while M[g] =1 do P od, p) 2% (|, MopM),

. - M . -
(while M[g] =1 do P od, p) =% (P;while M[g] =1do P od,MlpMD
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Operational Semantics

Probabilistic transitions of while-loop:

(while M[g] =1 do P od, p) 2% (|, MopM),
(while M[q] =1do P od,p) — M, (P;while M[g|=1do P od,MlpMD
Other transitions:

(skip, p) =+ (L, p), (7:=Uq,p) & (L, UpUY),
( LBy (1,10)q (0] ® try(p))
(f (O Mg =m — Py) i, p) 222 (P, MyupM) ¥m
( L (Pr.p), (PLU Py, p) S5 (Pap),
( n (P, p), (PL11 Py, p) L (Pz,p)
(P, p) 25 (P, ) (P2, p) ™ (Py. )
(Py || Paop) Zor (P 1| Poyt?) (Py || Payp) o (PL || Py )

U

P11 P, p)
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Denotational Semantics

State transformation: pou: = [P](pin)
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Denotational Semantics

State transformation: pou: = [P](pin)

e Nondeterministic choices are made according to the history by an
angelic scheduler o and a demonic scheduler 7.

e Then the execution path p follows from the probabilistic choices:

1 n

p=(Po,po) = -+ 5 (P, ).
Define [p] =& 0---0&.

[Plo.n)]= > [l

pEPath(o,T)

where Path(o,T) is the set of all paths p with Py = P and P, =/,
under an angelic scheduler o and a demonic scheduler 7.
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For a quantum prgram P and an input state p, define

e Termination probability:
TFs7(p) = tr([P(o, 7)](pin))-
e Expected running time:
if TP, (p) <1, ET,,(p) = oo; otherwise,

ET,;(p) = Y tr([Pr(o,7)](p)) x T,
T=0

where [Pr(o,7)] = > _{[p] | p € Path(o,1),|p| =T}.
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Termination problems

Definition | (Almost-sure termination)

A quantum program S is almost-surely terminating under input p, if

do V1. TP, (p) = 1. (5)

| A\

Definition Il (Finite termination)

A quantum program S is finitely terminating under input p;,, if

do V1. ETy+(p) < 0. (6)
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Result |

Decidability for finite-dimensional programs
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An illustrative example

e Program: while Mg =1do ¢:= X|[¢] N q:= Z[q] od

1)1 |0)(0]

l1(|_|) lo la
0 >z 7o) {10y, 1)}
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An illustrative example

e Program: while Mg =1 do ¢q:= X[q] M q:= Z|[q] od

1)1 |0)(0]

l1(|_|) lo la
0 >z 7o) {10y, 1)}

e Note: terminating subspaces form an invariant of the program.
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An illustrative example

e Program: while Mg =1 do ¢q:= X[q] M q:= Z|[q] od

1)1 |0)(0]

l1(|_|) lo la
0 >z 7o) {10y, 1)}

e Note: terminating subspaces form an invariant of the program.

o Difficulty in invariant generation: nontrivial invariant (neither I nor 0).
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Result description

Theorem | (Computability of S;,,)

Given a finite-dimensional quantum program P, the set

Sin ={[¥) : Jo.V7. TFs 1 (|9} (¢]) = 1}

of terminating initial pure states is computable.
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Result description

Theorem | (Computability of S;,,)

Given a finite-dimensional quantum program P, the set

Sin ={[¥) : Jo.V7. TFs 1 (|9} (¢]) = 1}

of terminating initial pure states is computable.

e AS.T & F.T for finite-dimensional programs.
e Termination is decidable by checking supp(pin) € S, where

@ Without angelic choice, S;;, is the subspace S;
® With angelic choice, S;, would be a finite union of different subspaces
due to different angelic strategy o, then S can be any one of them.

e |t is a generalization of our previous result for nondeterministic
quantum loops. [Li et al, Acta Inform. 51(2015),1]
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Generalized 0-1 Law

Lemma | (Generalized 0-1 Law)

Let X be an invariant subspace of a quantum Markov chain possibly with
demonic choice, and T'(p) the termination probability starting from a state

p, then

inf T(|)(y]) =0 or 1.

lp)eX
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Generalized 0-1 Law

Lemma | (Generalized 0-1 Law)

Let X be an invariant subspace of a quantum Markov chain possibly with
demonic choice, and T'(p) the termination probability starting from a state

p, then
inf T(])(x|) =0 or 1.

lp)eX

e In finite-dimensional case, infimum 0 is always reachable, but by a
trickier proof than the classical case.

e The set of diverging states: D; = {|¢) : T;(|2)(¢|) = 0}.
e Condition for generation of termination subspaces: S; N D; = 0.

Riga, Oct.12, 2018 - Li: Termination of Q-Programs - 17 / 38



Generation of diverging states

e {D,}, is the greatest fixed point under some transition relation.
e Algorithm: Generate {D;}; firstly, and then {S;}; accordingly.
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Generation of diverging states

e {D,}, is the greatest fixed point under some transition relation.
e Algorithm: Generate {D;}; firstly, and then {S;}; accordingly.
e Example: while M[¢q] =1do q:= X|[q] M ¢:= Z[q] od

ll(l_l) lo lo
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Generation of diverging states

e {D,}, is the greatest fixed point under some transition relation.
e Algorithm: Generate {D;}; firstly, and then {S;}; accordingly.
e Example: while M[¢] =1do q:= X|[q] M ¢:= Z[q] od

{l0), !1>}/X\{|E>7 1)} 0
bl 0)(0

ll(l_l) lo ly

~_ 2z —
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Generation of diverging states

e {D,}, is the greatest fixed point under some transition relation.
e Algorithm: Generate {D;}; firstly, and then {S;}; accordingly.
e Example: while M[¢] =1do q:= X|[q] M ¢:= Z[q] od

0.} _—*—__ {in) 0
1) (1] 0)(0]

ll(l_l) lo ly

~_ 2z —
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Generation of diverging states

e {D,}, is the greatest fixed point under some transition relation.
e Algorithm: Generate {D;}; firstly, and then {S;}; accordingly.
e Example: while M[¢] =1do q:= X|[q] M ¢:= Z[q] od

(3l ——_ () 0
L (M) 1) (1] o |0)(0] I
\Z_/
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Generation of diverging states

e {D,}, is the greatest fixed point under some transition relation.
e Algorithm: Generate {D;}; firstly, and then {S;}; accordingly.
e Example: while M[q] =1do q:= X|[q] M ¢:= Z[q] od

{loyyu{ny =X {0} 0
L (ﬂ)m " 10)(0] "

{\o>,\1>N/{\5>,rl>} {10), 1)}
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Generation of diverging states

e {D,}, is the greatest fixed point under some transition relation.
e Algorithm: Generate {D;}; firstly, and then {S;}; accordingly.
e Example: while M[q] =1do q:= X|[q] M ¢:= Z[q] od
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Generation of diverging states

e {D,}, is the greatest fixed point under some transition relation.
e Algorithm: Generate {D;}; firstly, and then {S;}; accordingly.
e Example: while M[q] =1do q:= X|[q] M ¢:= Z[q] od

{loyyu{ny =X {0} 0
L (mm " 10)(0] "

0 —2Z (o {10), 1)}
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Complexity

Lemma Il (Descending Chain Condition)

In a finite-dimensional Hilbert space, a descending chain

$5128522- 25,2

always terminates at some S, i.e., S;, = S, for all m > n, if each S}, is a
finite union of subspaces.
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Complexity

Lemma Il (Descending Chain Condition)

In a finite-dimensional Hilbert space, a descending chain
512822282

always terminates at some S, i.e., S;, = S, for all m > n, if each S}, is a
finite union of subspaces.

e A consequence of Hilbert's basis theorem.
e Particularly used here for generation of finite union D; of subspaces.

e An Ackermannian function A(d,n) w.r.t. the dimension d and the
program size n can be found as a complexity upper bound.
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Result Il

An LRSM-based approach
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Ranking function based approach

e The notion of Ranking Super-Martingale (RSM) has been introduced
in the study of probabilistic programs, and successfully used for
termination analysis of them.

[Fioriti & Hermanns, POPL'15], [Chatterjee et al, POPL'16]

e We introduce the notion of Linear Ranking Super-Martingale (LRSM)
as a quantum generalization of RSM, and apply it to termination
analysis for quantum programs. [Li & Ying, POPL'18]

Riga, Oct.12, 2018 - Li: Termination of Q-Programs - 27 / 38



An illustrative example

e Program: while M[¢] =1do ¢:= X|[q] M ¢:= H[q] od

X

ll(ﬂ)m o X I
Fr(p) () £2(p)
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An illustrative example

e Program: while M[¢] =1do ¢:= X|[q] M ¢:= H[q] od

X

ll(ﬂ)/llﬂll\* o 10) (0] I
Fr(p) () £2(p)

e Constraint: for all density operators p,

(1) fo(p), f1(p), falp) = K;;
(2) filp) = fo(XpX) +¢€ fi(p) = fo(HpH) + ¢, and
fo(p) = fa(poo - 10)(0]) + fi(p11 - [1)(1]) +e.
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An illustrative example

e Program: while M[¢] =1do ¢:= X|[q] M ¢:= H[q] od

X

1) (1] |0){0l

ll l2

\/}o f2(p)

e Constraint: for all density operators p,
(1) folp), f1(p), falp) = K
(2) f1(p) = fo(XpX) + ¢, fi(p) > fo(HpH) + ¢, and
fo(p) = f2(poo - [0){0]) + fi(p11 - [1)(1]) + e
e Solution: choose € = 0.5, K = fa(p) =0, fo(p) = tr(Ap), It suffices
to find an operator A such that

0C A A max{(0|A]0), (—|A|-)} - [1)(1] + I C A.
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Almost sure |Complete
Termination:
Prigym =1
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Finite
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ET < o0

Weak-
complete
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Linear Ranking Super-Martingale

A (K, e)-Linear Ranking Super-Martingale for a quantum program P with
respect to an invariant {O; },er is a function n : L x D(H) — R satisfying:
@ Linearity: n(l, pp +qo) = pn(l, p) + qn(l, o)
® K-lower bounded: n(l,p) > K + tr(O;p) — 1
© c-decreasing: (I, p) — pre,(l,p) = e+ tr(Op) — 1
for all I € L, density operators p and o, and p,q > 0.
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Linear Ranking Super-Martingale

A (K, e)-Linear Ranking Super-Martingale for a quantum program P with
respect to an invariant {O; },er is a function n : L x D(H) — R satisfying:
@ Linearity: n(l, pp +qo) = pn(l, p) + qn(l, o)
® K-lower bounded: n(l,p) > K + tr(O;p) — 1
© c-decreasing: (I, p) — pre,(l,p) = e+ tr(Op) — 1
for all I € L, density operators p and o, and p,q > 0.
e L is the set of instructions and H is the state space of P;

e The pre-expectation of 7 is defined for a regular (resp. angelic,
demonic) instruction [ as

prey(l,p) = A, 0') | (Lp) — (I, 0)},

where A = ¥ (resp. min, max).
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Termination theorems

Theorem | (Termination under additive invariants)

If a quantum program P has a (K, €)-LRSM, then it is finitely terminating
with any input satisfying tr(O;npin) = 1, and

ET < n(linapin) - K‘
€

e Proved in a similar but somehow different way to the probabilistic case.

Theorem Il (Termination under multiplicative invariants)

If a quantum program P has a (K, €)-LRSM w.r.t. a multiplicative
invariant {O;},, then it is finitely terminating with any input satisfying
tr(Oinpin) > 1 — €, and

(lin7 pln) —K+1-— tT(Omﬂm)

n
ET <
o €+ tT‘(Ompm) -1

e Proved by reduction to the (classical) Foster Theorem
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Weak completeness

Theorem 11l (Weak completeness)

A deterministic quantum program S is finite terminating for every input iff
it has a (0, 1)-LRSM with respect to the trivial invariant.

Proof: LRSM can be constructed from the ET.

Weakness: With nondeterministic choice ET may be non-linear.

Special case: Quantum Markov Chain.

A quantum generalization of the Foster Theorem on classical Markov
chain.
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LRSM synthesis by SDP

Gleason Theorem

If # is separable and dim # > 2, then for each measure m on S(#), there
exists a unique positive Hermitian matrix R with ¢r(R) = 1 such that

m(X) = tr(RPx)

for all X € S(H), where Px is the project onto X.

e Absence of angelic choice = conjunction form = SDP problem
SDP constraints on R;: >, Aj(R;) 3 C.

e Difficulty: Angelic choice = disjunction form, e.g.,

Vp € D(H). max{ D _tr(pAu(Ry)), > tr(pBi(R:))} > tr(pC).
l !
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LRSM synthesis with angelic choice

Generalized Farkas Lemma for SDP

Let Hy,--- , Hy, be a finite number of Hermitian operators in a finitely
dimensional Hilbert space H. Then the following two statements are
equivalent:
© For any p € D(H), V,.(tr(pHy) > 0);
® There exist non-negative numbers p; > 0,--- ,p, > 0, such that
pr+:-+pp >0 andp1H1+p2H2+~-+ann 0.
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LRSM synthesis with angelic choice

Generalized Farkas Lemma for SDP

Let Hy,--- , Hy, be a finite number of Hermitian operators in a finitely
dimensional Hilbert space H. Then the following two statements are
equivalent:
© For any p € D(H), V,.(tr(pHy) > 0);
® There exist non-negative numbers p; > 0,--- ,p, > 0, such that
pr+:-+pp >0 andp1H1+p2H2+~-+ann 0.

e Application: parameterized SDP form, e.g.,

Z(p.Al + ¢B;)(R;) I C for some p,q > 0,p+q = 1.
1

e Parameterized SDP w.r.t. any error in EXPTIME.
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Complexity

Probabilistic Quantum
The General Problem PSPACE 2-EXPTIME by QE with CAD
Without Angelic Choice PTIME PTIME w.r.t. an error
With Angelic Choice NP-hard EXPTIME w.r.t. an error
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Summary
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Main contribution

e A nontrivial proof of decidability for finite-dimensional case.
e The LRSM-based approach for termination analysis.

e Some useful techniques: quantum generalizations of 0-1 Law and of
Farkas lemma, and the application of Gleason theorem.
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Implementation in current quantum programming platforms.

More efficient algorithms and better complexity upper bounds.

Termination problems in expectation based QRHL.

Relations to other problems in quantum theory: reachability analysis,
quantum automata, measurement occurrence, etc.
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