Graph genus and road interchanges

Valentas Kurauskas
Vilnius University

Joint Estonian-Latvian Theory Days - Rīga - 14 Oct 2018

An engineering question

Is it possible to design a motorway interchange where drivers do not need to change lanes, cross other traffic lanes or stop to give way to other vehicles while inside the junction?

Crossroads X

Roundabout X

Road junctions / interchanges

Illustration from V. K., On the genus of the complete tripartite graph $K_{n, n, 1}$, Discrete Math 340 (2017).

The Pinavia interchange

4-way "Pinavia" interchange: Buteliauskas (2008); Buteliauskas, Krasauskas ir Juozapavičius (2010); www.pinavia.com

Graphs embedded into a surface

http:
//wwwmathlabo.univ-poitiers. fr/~phan/exemples2.html.

$$
\begin{aligned}
& \pi_{A}=\left(e_{4}, e_{10}, e_{9}, e_{8}\right) \\
& \pi_{B}=\left(e_{1}, e_{6}, e_{8}, e_{11}\right) \\
& \pi_{C}=\left(e_{9}, e_{2}, e_{7}, e_{1}\right) \\
& \pi_{D}=\left(e_{10}, e_{11}, e_{3}, e_{2}\right) \\
& \pi_{F}=\left(e_{4}, e_{6}, e_{7}, e_{3}\right)
\end{aligned}
$$

Euler's formula: 2-2•genus $=\#$ vertices $+\#$ faces $-\#$ edges

Modeling a road interchange as an embedding

Any such interchange \longleftrightarrow embedding of a bipartite graph with a Hamiltonian facial cycle.

Can go to any other direction $\longleftrightarrow K_{n, n}$

Not much prior literature

Yu. Kotov, Topology of an automobile interchange, Kvant 5 (1983) (in Russian).

Genus of specific graphs

- Genus of complete graphs K_{n} Ringel and Youngs (1968)
- Genus of complete bipartite graphs $K_{m, n}$ Ringel (1965)
- Genus of complete tripartite graphs $K_{m, n, l} m \geq n \geq 1$ conjecture White (1965):

$$
g\left(K_{m, n, l}\right)=\left\lceil\frac{(m-2)(n+I-2)}{4}\right\rceil
$$

- The conjecture proved very recently by Ellingham, Stephens and Zha (2018+)

The answer for even n

Theorem (VK, 2016)
For n even the minimum genus of an embedding of $K_{n, n}$ with a face bounded by a Hamiltonian cycle is $\lceil(n-1)(n-2) / 4\rceil$.

Corollary
For n even the genus of the complete tripartite graph $K_{n, n, 1}$ is $\lceil(n-1)(n-2) / 4\rceil$.

Optimal interchanges for $n=4$ and $n=5$

The only (up to isomorphism) optimal genus solutions for $n=4$ and $n=5$.

$n=4$

$n=4$

$n=5$

Rotationally symmetric interchanges of minimum genus

Two types of n-fold rotational symmetry:

1. Combinatorial / topological: rotation system invariant under the cyclic shift along H by 2 .
2. Geometric: the surface in \mathbb{R}^{3}, the embedded graph and the outer face are all invariant under rotation by $2 \pi / n$.

1: \checkmark 2: x

1: \checkmark 2: \checkmark

1: \checkmark 2: \checkmark

Results

We find the minimum genus for n-fold rotationally symmetric interchanges in both cases:

1. For topological/combinatorial symmetry, it depends on $n \bmod 4$ as well as on the smallest prime divisor of n.
2. For geometric $\left(\mathbb{R}^{3}\right)$ symmetry, it depends only on $n \bmod 4$.

Optimal symmetric constructions

"ring road" $n \bmod 4 \in\{1,2\} \ldots$

... extra "star bridge" $n \bmod 4 \in\{0,3\}, n \neq 4$.

Thank you.

- V. Kurauskas, On the genus of the complete tripartite graph $K_{n, n, 1}$, Discrete Mathematics (2016), arXiv:1612.07888.
- V. Kurauskas, U. Šiurienė, Symmetric road interchanges, arXiv:1801.03860.

Some details

Detailed result 1

Theorem (combinatorial symmetry)

The minimum genus for a complete interchange with n-fold combinatorial symmetry is $L_{C}(n)$ where

$$
L_{C}(n)= \begin{cases}\frac{n(n-2)}{4}, & \text { if } n \text { is even; } \\ \left\lfloor\frac{n(n-1)}{4}\right\rfloor+1-\frac{1}{2}\left(\frac{n}{p_{1}}+p_{1}\right), & \text { if } n \equiv 3(\bmod 4), p_{1} \neq n \text { and } p_{1}^{2} \nmid n ; \\ \left\lfloor\frac{n(n-1)}{4}\right\rfloor+1-\frac{1}{2}\left(\frac{n}{p_{1}}+1\right), & \text { if } n \equiv 3(\bmod 4) \text { and } p_{1}^{2} \mid n ; \\ \frac{n(n-1)}{4}-1, & \text { if } n \equiv 1(\bmod 4), 3 \mid n \text { and } 9 \nmid n ; \\ \left\lfloor\frac{n(n-1)}{4}\right\rfloor, & \text { otherwise, }\end{cases}
$$

where p_{1} is the smallest prime divisor of n.

Detailed result 2

Theorem (geometric symmetry)
For $n \neq 4$, the minimum genus for a complete interchange with n-fold geometric symmetry is $L_{C}^{*}(n)$ where

$$
L_{C}^{*}(n)= \begin{cases}\frac{n^{2}}{4}-1, & \text { if } n \equiv 0(\bmod 4) \\ \frac{n(n-1)}{4}, & \text { if } n \equiv 1(\bmod 4) \\ \frac{n(n-2)}{4}, & \text { if } n \equiv 2(\bmod 4) \\ \frac{n(n+1)}{4}-1, & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Building block for ringroad construction

