Quantum Dynamic Programming Algorithm for DAGs. Applications for AND-OR DAG Evaluation, Diameter, Shortest and Longest Paths Search in DAG

Kamil Khadiev and Liliya Safina

Estonian Latvian Theory Days 2018

Kazan Federal
 UNIVERSITY

Content

- Dinamic Programming for DAGs.

Content

- Dinamic Programming for DAGs.
- AND-OR DAG Evaluation.

Content

- Dinamic Programming for DAGs.
- AND-OR DAG Evaluation.
- Diameter Search for DAG.

Content

- Dinamic Programming for DAGs.
- AND-OR DAG Evaluation.
- Diameter Search for DAG.
- Shortest Path Search for DAG.

Content

- Dinamic Programming for DAGs.
- AND-OR DAG Evaluation.
- Diameter Search for DAG.
- Shortest Path Search for DAG.
- Longest Path Search for DAG.

Dynamic Programming for DAGs

DP: From small parametrs to big ones.

Dynamic Programming for DAGs

DP: From small parametrs to big ones.

Dynamic Programming for DAGs

DP: From small parametrs to big ones.

Dynamic Programming for DAGs

DP: From small parametrs to big ones.

Dynamic Programming for DAGs

DP: From small parametrs to big ones.
DP for Directed Acycling Graphs

- DAG $G=(V, E)$:

Dynamic Programming for DAGs

DP: From small parametrs to big ones.
DP for Directed Acycling Graphs

- DAG $G=(V, E)$:
- $S_{i}=\left(v_{j_{1}}, \ldots, v_{j_{w}}\right)$ are "succeeding" for v_{i} : $\left(v_{i}, v_{j_{t}}\right) \in E$;

Dynamic Programming for DAGs

DP: From small parametrs to big ones.
DP for Directed Acycling Graphs

- DAG $G=(V, E)$:
- $S_{i}=\left(v_{j_{1}}, \ldots, v_{j_{w}}\right)$ are "succeeding" for v_{i} : $\left(v_{i}, v_{j_{t}}\right) \in E$;
- G is topologically sorted: $\forall\left(v_{i}, v_{j}\right) \in E: i<j$.

Dynamic Programming for DAGs

DP: From small parametrs to big ones.
DP for Directed Acycling Graphs

- DAG $G=(V, E)$:
- $S_{i}=\left(v_{j_{1}}, \ldots, v_{j_{w}}\right)$ are "succeeding" for v_{i} : $\left(v_{i}, v_{j_{t}}\right) \in E$;
- G is topologically sorted:

$$
\forall\left(v_{i}, v_{j}\right) \in E: i<j
$$

- Problem Z:
- the solution can be presented as a result of a function $f\left(v_{i}\right)$.
- $f\left(v_{i}\right)=h\left(f\left(v_{j_{1}}\right), \ldots, f\left(v_{j_{w}}\right)\right)$, for $\left(v_{j_{1}}, \ldots, v_{j_{w}}\right)=S_{i}, w=\left|S_{i}\right|$.

Dynamic Programming for DAGs

DP: From small parametrs to big ones.

DP for Directed Acycling Graphs

- DAG $G=(V, E)$:
- $S_{i}=\left(v_{j_{1}}, \ldots, v_{j_{w}}\right)$ are "succeeding" for v_{i} :

$$
\left(v_{i}, v_{j_{t}}\right) \in E ;
$$

- G is topologically sorted:

$$
\forall\left(v_{i}, v_{j}\right) \in E: i<j .
$$

- Problem Z:
- the solution can be presented as a result of a function $f\left(v_{i}\right)$.
- $f\left(v_{i}\right)=h\left(f\left(v_{j_{1}}\right), \ldots, f\left(v_{j_{w}}\right)\right)$, for $\left(v_{j_{1}}, \ldots, v_{j_{w}}\right)=S_{i}, w=\left|S_{i}\right|$.
- Let t_{i} be an array with results of f. for i in $(|V|, \ldots, 1)$:

$$
t_{i}=h\left(t_{j_{1}}, \ldots, t_{j_{w}}\right)
$$

, where $\left(v_{j_{1}}, \ldots, v_{j_{w}}\right)=S_{i}, w=\left|S_{i}\right|$

Dynamic Programming for DAGs

Classical DP for DAG

for i in $(|V|, \ldots, 1)$:
$t_{i}=h\left(t_{j_{1}}, \ldots, t_{j_{w}}\right)$

- Time complexity of one step is $\left|S_{i}\right|$
- Time complexity of whole algorithm is $O(|E|+|V|)$.

Dynamic Programming for DAGs

Classical DP for DAG

for i in $(|V|, \ldots, 1)$:

$$
t_{i}=h\left(t_{j_{1}}, \ldots, t_{j_{w}}\right)
$$

- Time complexity of one step is $\left|S_{i}\right|$
- Time complexity of whole algorithm is $O(|E|+|V|)$.

Quantum DP for DAG

for i in $(|V|, \ldots, 1)$:
$t_{i}=Q\left(t_{j_{1}}, \ldots, t_{j_{w}}\right)$
If h is based on MAX, MIN, AND, OR, NAND then

- Time complexity of one step is $\sqrt{\left|S_{i}\right|}$
- Time complexity of whole algorithm is

$$
O\left(\sum_{i=1}^{|V|} \sqrt{\left|S_{i}\right|}\right)=O(\sqrt{|V||E|})
$$

The Improvement of the Quantum Algorithm

Inner vertexes of DAG

for i in $(|V|-|L|, \ldots, 1)$:

$$
t_{i}=h\left(t_{j_{1}}, \ldots, t_{j_{w}}\right)
$$

Here L is the set of "leaf" vertexes.
$L=\left\{v_{i}:\left|S_{i}\right|=0\right\}$

The Improvement of the Quantum Algorithm

Inner vertexes of DAG

for i in $(|V|-|L|, \ldots, 1)$:

$$
t_{i}=h\left(t_{j_{1}}, \ldots, t_{j_{w}}\right)
$$

Here L is the set of "leaf" vertexes.
$L=\left\{v_{i}:\left|S_{i}\right|=0\right\}$

- Time complexity is $O(\sqrt{(|V|-|L|)|E|})$.

Improvement of Quantum algorithm

Small error probability

Improvement of Quantum algorithm

Small error probability

- A success probability of the main algorithm is $O\left(\frac{1}{2 \mid V}\right)$.

Improvement of Quantum algorithm

Small error probability

- A success probability of the main algorithm is $O\left(\frac{1}{2^{|V|}}\right)$.
- We repeat the algorithm Q on each vertex $2 \log _{2}|V|$ times.

Improvement of Quantum algorithm

Small error probability

- A success probability of the main algorithm is $O\left(\frac{1}{2^{|V|}}\right)$.
- We repeat the algorithm Q on each vertex $2 \log _{2}|V|$ times.
- Time complexity is $O(\sqrt{(|V|-|L|)|E|} \log |V|)$, Error probability is $O\left(\frac{1}{|V|}\right)$.

AND-OR DAG Evaluation

AND-OR DAG

AND-OR DAG Evaluation

AND-OR DAG

- AND, OR, NAND-vertexes

AND-OR DAG Evaluation

AND-OR DAG

- AND, OR, NAND-vertexes
- can be NOT-edges

AND-OR DAG Evaluation

AND-OR DAG

- AND, OR, NAND-vertexes
- can be NOT-edges
- variable-"leafs"

AND-OR DAG Evaluation

AND-OR DAG

- AND, OR, NAND-vertexes
- can be NOT-edges
- variable-"leafs"

Quantum DP Algorithm
for i in $(|V|-|L|, \ldots, 1)$:

$$
t_{i}=Q\left(2 \log _{2}|V|,\left\{t_{j_{1}}^{\prime\left(j_{1}\right)}, \ldots, t_{j_{w}}^{\prime\left(j_{w}\right)}\right\}\right)
$$

AND-OR DAG Evaluation

AND-OR DAG

- AND, OR, NAND-vertexes
- can be NOT-edges
- variable-"leafs"

Quantum DP Algorithm for i in $(|V|-|L|, \ldots, 1)$:

$$
t_{i}=Q\left(2 \log _{2}|V|,\left\{t_{j_{1}}^{\prime\left(j_{1}\right)}, \ldots, t_{j_{w}}^{l\left(j_{w}\right)}\right\}\right)
$$

- $l(j) \in\{0,1\}, t_{j}^{1}=t_{j}^{1}, t_{j}^{0}=N O T t_{j}$

AND-OR DAG Evaluation

AND-OR DAG

- AND, OR, NAND-vertexes
- can be NOT-edges
- variable-"leafs"

Quantum DP Algorithm

 for i in $(|V|-|L|, \ldots, 1)$:$$
t_{i}=Q\left(2 \log _{2}|V|,\left\{t_{j_{1}}^{\prime\left(j_{1}\right)}, \ldots, t_{j_{w}}^{l\left(j_{w}\right)}\right\}\right)
$$

- $l(j) \in\{0,1\}, t_{j}^{1}=t_{j}^{1}, t_{j}^{0}=N O T t_{j}$
- $Q(K, S)$ for OR is K times Grover search of
 1s in S.

AND-OR DAG Evaluation

AND-OR DAG

- AND, OR, NAND-vertexes
- can be NOT-edges
- variable-"leafs"

Quantum DP Algorithm
for i in $(|V|-|L|, \ldots, 1)$:

$$
t_{i}=Q\left(2 \log _{2}|V|,\left\{t_{j_{1}}^{\prime\left(j_{1}\right)}, \ldots, t_{j_{w}}^{l\left(j_{w}\right)}\right\}\right)
$$

- $I(j) \in\{0,1\}, t_{j}^{1}=t_{j}^{1}, t_{j}^{0}=N O T t_{j}$
- $Q(K, S)$ for OR is K times Grover search of
 1s in S.
- $Q(K, S)$ for AND, NAND is K times Grover search of 0s in S.

AND-OR DAG Evaluation

Existing Algorithms

- Deterministic: $T=O(|E|)=O\left(|V|^{2}\right)$;

AND-OR DAG Evaluation

Existing Algorithms

- Deterministic: $T=O(|E|)=O\left(|V|^{2}\right)$;
- Quantum (Ambainis, 2007, 2010) for a tree: $T=O\left(|V|^{0.5}\right)$.

AND-OR DAG Evaluation

Existing Algorithms

- Deterministic: $T=O(|E|)=O\left(|V|^{2}\right)$;
- Quantum (Ambainis, 2007, 2010) for a tree: $T=O\left(|V|^{0.5}\right)$.
- DAG \rightarrow tree: can be $T=2^{O(|V|)}$.

AND-OR DAG Evaluation

Existing Algorithms

- Deterministic: $T=O(|E|)=O\left(|V|^{2}\right)$;
- Quantum (Ambainis, 2007, 2010) for a tree: $T=O\left(|V|^{0.5}\right)$.
- DAG \rightarrow tree: can be $T=2^{O(|V|)}$.

AND-OR DAG Evaluation

Existing Algorithms

- Deterministic: $T=O(|E|)=O\left(|V|^{2}\right)$;
- Quantum (Ambainis, 2007, 2010) for a tree: $T=O\left(|V|^{0.5}\right)$.
- DAG \rightarrow tree: can be $T=2^{O(|V|)}$.

Quantum Algorithm

AND-OR DAG Evaluation

Existing Algorithms

- Deterministic: $T=O(|E|)=O\left(|V|^{2}\right)$;
- Quantum (Ambainis, 2007, 2010) for a tree: $T=O\left(|V|^{0.5}\right)$.
- DAG \rightarrow tree: can be $T=2^{O(|V|)}$.

Quantum Algorithm

- Grover Search algorithm's $T=O(\sqrt{N})$ and $\operatorname{Pr}_{\text {error }} \leq 0.5$.

AND-OR DAG Evaluation

Existing Algorithms

- Deterministic: $T=O(|E|)=O\left(|V|^{2}\right)$;
- Quantum (Ambainis, 2007, 2010) for a tree: $T=O\left(|V|^{0.5}\right)$.
- DAG \rightarrow tree: can be $T=2^{O(|V|)}$.

Quantum Algorithm

- Grover Search algorithm's $T=O(\sqrt{N})$ and $\operatorname{Pr}_{\text {error }} \leq 0.5$.
- Q algorithm's $T=O\left(\sqrt{\left|S_{i}\right|} \log |V|\right)$ and $\operatorname{Pr}_{\text {error }}=O\left(\frac{1}{|V|^{2}}\right)$

AND-OR DAG Evaluation

Existing Algorithms

- Deterministic: $T=O(|E|)=O\left(|V|^{2}\right)$;
- Quantum (Ambainis, 2007, 2010) for a tree: $T=O\left(|V|^{0.5}\right)$.
- DAG \rightarrow tree: can be $T=2^{O(|V|)}$.

Quantum Algorithm

- Grover Search algorithm's $T=O(\sqrt{N})$ and $\operatorname{Pr}_{\text {error }} \leq 0.5$.
- Q algorithm's $T=O\left(\sqrt{\left|S_{i}\right|} \log |V|\right)$ and $\operatorname{Pr}_{\text {error }}=O\left(\frac{1}{|V|^{2}}\right)$
- Time complexity of whole algorithm is

$$
T=O(\sqrt{(|V|-|L|)|E|} \log |V|)=O\left(|V|^{1.5} \log |V|\right)
$$

AND-OR DAG Evaluation. Example

$$
F^{k, l}(X)=\bigoplus_{i=1}^{l} \bigwedge_{j=1}^{k} x_{i, j}
$$

- Deterministic algorithm: $T=O(k /)$;
- Quantum algorithm for a tree: $T=O\left(2^{1 / 2}\right)$.
- Our quantum algorithm for a DAG: $T=O(/ \sqrt{k} \log /)$

AND-OR DAG Evaluation. Example

$F^{k, l}(X)=\bigoplus_{i=1}^{\prime} \bigwedge_{j=1}^{k} x_{i, j}$

- Deterministic algorithm: $T=O(k /)$;
- Quantum algorithm for a tree: $T=O\left(2^{1 / 2}\right)$.
- Our quantum algorithm for a DAG: $T=O(/ \sqrt{k} \log /)$

Zhegalkin polynomial

$F^{m}(X)=\bigoplus_{i=1}^{\prime} x_{j_{1}} \wedge \cdots \wedge x_{j_{k_{i}}}$
$m=\sum_{i=1}^{l} k_{i}$.

- Deterministic: $T=O(m)$.
- Quantum algorithm for a tree: $T=O\left(2^{1 / 2}\right)$.
- Our quantum algorithm for a DAG: $T=O(\sqrt{\operatorname{Im}}(\log /+\log m))$.

Diameter Search Problem

Diameter Search Problem

d is distance between most far vertexes.

Diameter Search Problem

Diameter Search Problem

d is distance between most far vertexes.

Quantum Algorithm

for i in $(|V|-|L|, \ldots, 1)$:

$$
\begin{aligned}
& u=Q M A X-I N D-K-T I M E S\left(2 \log _{2} h,\left\{t_{j_{1}}, \ldots, t_{j_{w}}\right\}\right) \\
& z=Q M A X-I N D_{-} K_{-} \operatorname{TIMES}\left(2 \log _{2} h,\left\{t_{j_{1}}, \ldots, t_{j_{w}}\right\} \backslash\{u\}\right) \\
& \text { ans }=\max \left(\text { ans }, t_{u}+t_{z}+2\right) \\
& t_{i}=t_{u}+1
\end{aligned}
$$

Here $Q M A X _I N D _K _\operatorname{TIMES}(K, S)$ is the quantum algorithm that searches index of the maximal element in S (Dürr, Høyer, 1996). We invoke it K times.

Diameter Search Problem

Deterministic Algorithm
 $T=O(|E|)=O\left(|V|^{2}\right)$.

Diameter Search Problem

Deterministic Algorithm
 $T=O(|E|)=O\left(|V|^{2}\right)$.

Quantum Algorithm

Diameter Search Problem

Deterministic Algorithm

$T=O(|E|)=O\left(|V|^{2}\right)$.

Quantum Algorithm

- Dürr, Høyer algorithm's $T=O(\sqrt{N})$ and Prerror $^{5} 0.5$.

Diameter Search Problem

Deterministic Algorithm

$T=O(|E|)=O\left(|V|^{2}\right)$.

Quantum Algorithm

- Dürr, Høyer algorithm's $T=O(\sqrt{N})$ and $\operatorname{Pr}_{\text {error }} \leq 0.5$.
- QMAX_IND_K_TIMES algorithm's $T=O\left(\sqrt{\left|S_{i}\right|} \log |V|\right)$ and Prerror $=O\left(\frac{-1}{|V|^{2}}\right)^{-}$

Diameter Search Problem

Deterministic Algorithm

$T=O(|E|)=O\left(|V|^{2}\right)$.

Quantum Algorithm

- Dürr, Høyer algorithm's $T=O(\sqrt{N})$ and $\operatorname{Pr}_{\text {error }} \leq 0.5$.
- QMAX_IND_K_TIMES algorithm's $T=O\left(\sqrt{\left|S_{i}\right|} \log |V|\right)$ and $P r_{\text {error }}=O\left(\frac{1}{|V|^{2}}\right)$
- Time complexity of whole algorithm is

$$
T=O(\sqrt{(|V|-|L|)|E|} \log |V|)=O(\sqrt{|V||E|} \log |V|)=
$$ $O\left(|V|^{1.5} \log |V|\right)$.

Shortest Path Search Problem

Shortest Path Search Problem

Shortest paths from v_{s}-vertex to others in weighed DAG

Shortest Path Search Problem

Shortest Path Search Problem

Shortest paths from v_{s}-vertex to others in weighed DAG

Quantum Algorithm

for i in $(s, \ldots,|V|)$:

$$
t_{i}=\text { QMIN_K_TIMES }\left(2 \log _{2}|V|,\left\{t_{j_{1}}, \ldots, t_{j_{w}}\right\}\right)
$$

where $P_{i}=\left\{t_{j_{1}}, \ldots, t_{j_{w}}\right\}$ are "preceding" for $v_{i}:\left(v_{j_{t}}, v_{i}\right) \in E$

Shortest Path Search Problem

Deterministic Algorithms

- DP for DAGs: $T=O(|E|)=O\left(|V|^{2}\right)$.
- Dijkstra's algorithm with Fibonacci heap for graphs:

$$
T=O(|E|+|V| \log |V|) .
$$

- Dörn'2009 quantum algorithm for graphs:

$$
T=O\left(\sqrt{|V||E|(\log |V|)^{2}}\right)
$$

Shortest Path Search Problem

Deterministic Algorithms

- DP for DAGs: $T=O(|E|)=O\left(|V|^{2}\right)$.
- Dijkstra's algorithm with Fibonacci heap for graphs:

$$
T=O(|E|+|V| \log |V|) .
$$

- Dörn'2009 quantum algorithm for graphs:

$$
T=O\left(\sqrt{|V||E|}(\log |V|)^{2}\right)
$$

Quantum Algorithm

$$
T=O(\sqrt{(|V|-s)|E|} \log |V|)=O(\sqrt{|V||E|} \log |V|)=O\left(|V|^{1.5} \log |V|\right) .
$$

Longest Path Search Problem

Longest Path Search Problem

Longest paths from v_{s}-vertex to others in weighed DAG

Longest Path Search Problem

Longest Path Search Problem

Longest paths from v_{s}-vertex to others in weighed DAG

Quantum Algorithm

for i in $(s, \ldots,|V|)$:
$t_{i}=Q M A X _K _\operatorname{TIMES}\left(2 \log _{2}|V|,\left\{t_{j_{1}}, \ldots, t_{j_{w}}\right\}\right)$
where $P_{i}=\left\{t_{j_{1}}, \ldots, t_{j_{w}}\right\}$ are "preceding" for $v_{i}:\left(v_{j_{t}}, v_{i}\right) \in E$

Shortest Path Search Problem

Deterministic Algorithms

- DP for DAGs: $T=O(|E|)=O\left(|V|^{2}\right)$.
- a NP-complete problem for graphs.

Shortest Path Search Problem

Deterministic Algorithms

- DP for DAGs: $T=O(|E|)=O\left(|V|^{2}\right)$.
- a NP-complete problem for graphs.

Quantum Algorithm

$T=O(\sqrt{(|V|-s)|E|} \log |V|)=O(\sqrt{|V||E|} \log |V|)=O\left(|V|^{1.5} \log |V|\right)$.

Thank you for your attention! Paldies! Aitäh!

