Quantum Speedups for Exponential-Time Dynamic Programming Algorithms

Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis Prūsis, Jevgēnijs Vihrovs

Faculty of Computing, University of Latvia

12th October, 2018 Joint Estonian-Latvian Theory Days

Quantum algorithms for NP-hard problems

- Algorithms for many NP-hard problems are widely used despite the exponential running time.

■ Can we speed these algorithms up using quantum computation?

Example: the travelling salesman problem

■ We are given a graph $G(V, E)$ of n cities, with edge weights denoting the travel time between each pair.

Example: the travelling salesman problem

- A travelling salesman wants to visit every city exactly once and return back to his starting position as fast as possible.

- Classically can be solved in $\mathrm{O}^{*}\left(2^{n}\right)$.

Grover's search

- A quantum algorithm to find an answer from n independent procedures, each taking some time T, in time $O(T \sqrt{n})$.

Quantum speedup for SAT

- SAT over n variables is believed to not be solvable faster than $\mathrm{O}^{*}\left(2^{n}\right)$ classically.

■ Grover's search over all 2^{n} possible assignments gives an $\mathrm{O}^{*}\left(\sqrt{2^{n}}\right)$ quantum algorithm.

■ Can we achieve a similar quadratic improvement for other NP-hard problems?

The naive algorithm for the TSP

- Try every possible order of cities.
- There are $(n-1)$! possible orders, checking the length of a path takes $O(n)$ time.
- This gives a total complexity of

$$
O(n \cdot(n-1)!)=O(n!)
$$

Quantum version of the naive algorithm

■ Perform Grover's search over every possible order of cities.

- This gives a quadratic improvement:

$$
O(\sqrt{n!})
$$

The Bellman-Held-Karp algorithm

- A DP algorithm solving the TSP in $\mathrm{O}^{*}\left(2^{n}\right)$ time.

■ For each subset $S \subseteq V$ and pair start, end $\in S$, compute the shortest distance $\mathrm{D}(S$, start, end) from start visiting every city in S and ending in end.

Bellman-Held-Karp Algorithm dynamic programming

- $\mathrm{D}(\{v\}, v, v)=0$.

■ $\mathrm{D}(S$, start, end $)=\min _{\substack{\text { prev } \in S \\ \text { prevend }}}\{\mathrm{D}(S \backslash\{$ end $\}$, start, prev $)+\mathrm{w}($ prev, end $)\}$.

■ Answer: $\min _{\text {start,end } \in V}\{\mathrm{D}(V$, start, end $)+w($ end, start $)\}$.

Bellman-Held-Karp algorithm complexity

- There are 2^{n} subsets.
- Each subset has at most n choices of start, prev, end.
- This gives a complexity of

$$
O\left(n^{3} \cdot 2^{n}\right)=0^{*}\left(2^{n}\right)
$$

Quantum algorithm outline

■ Precompute $D(S$, start, end) for small sets S.

■ Use Grover's search to find the optimal way to to combine these small paths into a cycle.

Classical precomputation

■ Computing $D(S$, start, end) for every $S:|S| \leq t \cdot n$ and every start, end takes time

$$
\mathrm{O}^{*}\left(\sum_{k=0}^{k=t \cdot n}\binom{n}{k}\right)=\mathrm{O}^{*}\left(2^{H(t) n}\right)
$$

where H is the binary entropy function.

■ Our algorithm starts by doing this for sets of size up to $0.24 n$, with a time complexity of

$$
\mathrm{O}^{*}\left(2^{H(0.24) n}\right) \approx \mathrm{O}^{*}\left(1.73^{n}\right)
$$

City set splits

- We can split the set into halves of size $n / 2$ in $\binom{n}{n / 2}$ ways.
- For each split, also choose the start and end vertices, giving only an n^{4} factor.

City set splits

■ Now we find paths in each half separately.

■ We can split these further into parts of size $n / 4$.

■ Finally, we split those into parts of size $0.24 n$ and $0.01 n$, where we have already computed the optimal paths.

Quantum search over splits

■ Classically searching over these splits takes time

$$
\mathrm{O}^{*}\left(\binom{n}{n / 2}\binom{n / 2}{n / 4}\binom{n / 4}{0.24 n}\right) .
$$

■ Grover's search takes time

$$
\mathrm{O}^{*}\left(\sqrt{\binom{n}{n / 2}\binom{n / 2}{n / 4}\binom{n / 4}{0.24 n}}\right) \approx \mathrm{O}^{*}\left(1.73^{n}\right)
$$

Overall complexity

- the value 0.24 balances the O^{*} complexity of the classical precompution and the quantum search.
- This gives an $\mathrm{O}^{*}\left(1.73^{n}\right)$ quantum algorithm for the TSP, an improvement over the $\mathrm{O}^{*}\left(2^{n}\right)$ classical one.

Generalization

- This algorithm works for optimization problems OPT with the following property:

$$
\operatorname{OPT}(S)=\min _{\substack{T \subseteq S \\|T|=k}}\{\operatorname{OPT}(T)+\operatorname{OPT}(S \backslash T)+f(S, T)\}
$$

- This includes Feedback Arc Set and, with some modifications, Minimum Set Cover.

BHK algorithm generalization

- The Bellman-Held-Karp algorithm does not require such splits.
- For it a weaker property is sufficient:

$$
\operatorname{OPT}(S)=\min _{v \in S}\{\operatorname{OPT}(S \backslash\{v\})+f(S, v)\}
$$

Path in the Hypercube

■ Boolean hypercube $\{0,1\}^{n}$, edges $x \rightarrow y$ if $|x|+1=|y|$.

- Input: a subgraph G.
- Output: is there a path from 0^{n} to 1^{n} in G ?

Layers

■ Select a constant number of layers with a fixed Hamming weight.

Classical precomputation

- Classically precompute which vertices are reachable from 0^{n} up to the first layer.
■ Symmetrically find paths from the last layer to 1^{n}.

Quantum Search

- To find whether a vertex x in a further layer is reachable, perform Grover's search over vertices of the previous layer.
■ Find each such vertex y, find a path between y and x recursively.

Overall Complexity

- Perform Grover's search to find a vertex x in the middle layer reachable from both sides.
■ The overall complexity is $\mathrm{O}^{*}\left(1.817^{n}\right)$.

Applications

■ Vertex ordering problems:
Treewidth*, Minimum Fill-In*, Pathwidth, Sum Cut, Minimum Interval Graph Completion, Cutwidth and Optimal Linear Arrangement.

- With modifications to take advantage of knowing the number of edges in G, Graph Bandwidth.

Summary

	Classical (best known)	Quantum (this work)
Travelling Salesman Problem	$O\left(n^{2} 2^{n}\right)$	$O^{*}\left(1.728^{n}\right)$
Feedback Arc Set	$O^{*}\left(2^{n}\right)$	$O^{*}\left(1.728^{n}\right)$
Minimum Set Cover	$O\left(n m 2^{n}\right)$	$O\left(\right.$ poly $\left.(m, n) 1.728^{n}\right)$
Path in the Hypercube	$O\left(n 2^{n}\right)$	$O^{*}\left(1.817^{n}\right)$
Vertex Ordering Problems	$O^{*}\left(2^{n}\right)$	$O^{*}\left(1.817^{n}\right)$
Graph Bandwidth	$O^{*}\left(4.383^{n}\right)$	$O^{*}\left(2.946^{n}\right)$

Open questions

■ Quadratic speedup?

■ Lower bounds?

■ Subexponential memory?

Thank you!

