
Quantum Speedups for Exponential-Time
Dynamic Programming Algorithms

Andris Ambainis, Kaspars Balodis, Jānis Iraids,
Martins Kokainis, Krǐsjānis Prūsis, Jevgēnijs Vihrovs

Faculty of Computing, University of Latvia

12th October, 2018 Joint Estonian-Latvian Theory Days

Quantum algorithms for NP-hard problems

Algorithms for many NP-hard problems are widely used
despite the exponential running time.

Can we speed these algorithms up using quantum
computation?

Example: the travelling salesman problem

We are given a graph G (V ,E) of n cities, with edge weights
denoting the travel time between each pair.

1 2

3 4

3

4
5 2

5

3

Example: the travelling salesman problem

A travelling salesman wants to visit every city exactly once
and return back to his starting position as fast as possible.

1 2

3 4

4 5

3

5 2

3

Classically can be solved in O*(2n).

Grover’s search

A quantum algorithm to find an answer from n independent
procedures, each taking some time T , in time O(T

√
n).

Quantum speedup for SAT

SAT over n variables is believed to not be solvable faster than
O*(2n) classically.

Grover’s search over all 2n possible assignments gives an
O*(
√

2n) quantum algorithm.

Can we achieve a similar quadratic improvement for other
NP-hard problems?

The naive algorithm for the TSP

Try every possible order of cities.

There are (n − 1)! possible orders, checking the length of a
path takes O(n) time.

This gives a total complexity of

O(n · (n − 1)!) = O(n!).

Quantum version of the naive algorithm

Perform Grover’s search over every possible order of cities.

This gives a quadratic improvement:

O
(√

n!
)
.

The Bellman-Held-Karp algorithm

A DP algorithm solving the TSP in O*(2n) time.

For each subset S ⊆ V and pair start, end ∈ S , compute the
shortest distance D(S , start, end) from start visiting every city
in S and ending in end .

Bellman-Held-Karp Algorithm dynamic programming

D({v}, v , v) = 0.

D(S , start, end) = min
prev∈S
prev6=end

{D(S \ {end}, start, prev) + w(prev, end)}.

Answer: min
start,end∈V

{D(V , start, end) + w(end, start)}.

Bellman-Held-Karp algorithm complexity

There are 2n subsets.

Each subset has at most n choices of start, prev , end .

This gives a complexity of

O(n3 · 2n) = O*(2n).

Quantum algorithm outline

Precompute D(S , start, end) for small sets S .

Use Grover’s search to find the optimal way to to combine
these small paths into a cycle.

Classical precomputation

Computing D(S , start, end) for every S : |S | ≤ t · n and every
start, end takes time

O*

(
k=t·n∑
k=0

(
n

k

))
= O*

(
2H(t)n

)
where H is the binary entropy function.

Our algorithm starts by doing this for sets of size up to 0.24n,
with a time complexity of

O*
(

2H(0.24)n
)
≈ O*(1.73n).

City set splits

We can split the set into halves of size n/2 in
(n
n/2

)
ways.

For each split, also choose the start and end vertices, giving
only an n4 factor.

start

?

end

?

end’

start’

City set splits

Now we find paths in each half separately.

We can split these further into parts of size n/4.

Finally, we split those into parts of size 0.24n and 0.01n,
where we have already computed the optimal paths.

Quantum search over splits

Classically searching over these splits takes time

O*

((
n

n/2

)(
n/2

n/4

)(
n/4

0.24n

))
.

Grover’s search takes time

O*

(√(
n

n/2

)(
n/2

n/4

)(
n/4

0.24n

))
≈ O*(1.73n).

Overall complexity

the value 0.24 balances the O* complexity of the classical
precompution and the quantum search.

This gives an O*(1.73n) quantum algorithm for the TSP, an
improvement over the O*(2n) classical one.

Generalization

This algorithm works for optimization problems OPT with the
following property:

OPT(S) = min
T⊆S
|T |=k

{OPT(T) + OPT(S \ T) + f (S ,T)}.

This includes Feedback Arc Set and, with some
modifications, Minimum Set Cover.

BHK algorithm generalization

The Bellman-Held-Karp algorithm does not require such
splits.

For it a weaker property is sufficient:

OPT(S) = min
v∈S
{OPT(S \ {v}) + f (S , v)}.

Path in the Hypercube

0n 1n

Boolean hypercube {0, 1}n, edges x → y if |x |+ 1 = |y |.
Input: a subgraph G .

Output: is there a path from 0n to 1n in G?

Layers

0n 1n

α1n
. . .

αk−1n

αkn

αk+1n = n
2

n − α1n
. . .

n − αk−1n

n − αkn

Select a constant number of layers with a fixed Hamming
weight.

Classical precomputation

0n 1n

α1n
. . .

αk−1n

αkn

αk+1n = n
2

n − α1n
. . .

n − αk−1n

n − αkn

Classically precompute which vertices are reachable from 0n

up to the first layer.

Symmetrically find paths from the last layer to 1n.

Quantum Search

0n 1n

αi−1n

αin

xy

To find whether a vertex x in a further layer is reachable,
perform Grover’s search over vertices of the previous layer.

Find each such vertex y , find a path between y and x
recursively.

Overall Complexity

0n 1n

αk+1n = n
2

x

Perform Grover’s search to find a vertex x in the middle layer
reachable from both sides.

The overall complexity is O*(1.817n).

Applications

Vertex ordering problems:
Treewidth∗, Minimum Fill-In∗, Pathwidth, Sum
Cut, Minimum Interval Graph Completion,
Cutwidth and Optimal Linear Arrangement.

With modifications to take advantage of knowing the number
of edges in G, Graph Bandwidth.

Summary

Classical (best known) Quantum (this work)

Travelling Salesman Problem O(n22n) O∗(1.728n)
Feedback Arc Set O∗(2n) O∗(1.728n)

Minimum Set Cover O(nm2n) O(poly(m, n)1.728n)
Path in the Hypercube O(n2n) O∗(1.817n)

Vertex Ordering Problems O∗(2n) O∗(1.817n)
Graph Bandwidth O∗(4.383n) O∗(2.946n)

Open questions

Quadratic speedup?

Lower bounds?

Subexponential memory?

Thank you!

	

