Quantum Speedups for Exponential-Time
Dynamic Programming Algorithms

Andris Ambainis, Kaspars Balodis, Janis Iraids,
Martins Kokainis, Krigjanis Prisis, Jevgenijs Vihrovs

Faculty of Computing, University of Latvia

12th October, 2018 Joint Estonian-Latvian Theory Days

Quantum algorithms for NP-hard problems

m Algorithms for many NP-hard problems are widely used
despite the exponential running time.

m Can we speed these algorithms up using quantum
computation?

Example: the travelling salesman problem

m We are given a graph G(V, E) of n cities, with edge weights
denoting the travel time between each pair.

Example: the travelling salesman problem

m A travelling salesman wants to visit every city exactly once
and return back to his starting position as fast as possible.

m Classically can be solved in O*(2").

Grover's search

m A quantum algorithm to find an answer from n independent
procedures, each taking some time T, in time O(T+/n).

Quantum speedup for SAT

m SAT over n variables is believed to not be solvable faster than
0*(2") classically.

m Grover's search over all 2" possible assignments gives an
0"(v/2") quantum algorithm.

m Can we achieve a similar quadratic improvement for other
NP-hard problems?

The naive algorithm for the TSP

m Try every possible order of cities.

m There are (n — 1)! possible orders, checking the length of a
path takes O(n) time.

m This gives a total complexity of

O(n-(n—1)!) = 0O(n!).

Quantum version of the naive algorithm

m Perform Grover's search over every possible order of cities.

m This gives a quadratic improvement:

o(val).

The Bellman-Held-Karp algorithm

m A DP algorithm solving the TSP in O*(2") time.

m For each subset S C V and pair start,end € S, compute the
shortest distance D(S, start, end) from start visiting every city
in S and ending in end.

Bellman-Held-Karp Algorithm dynamic programming

m D({v},v,v)=0.

m D(S,start,end) = miens {D(S \ {end}, start, prev) + w(prev,end)}.
prev

prev#end

m Answer: min {D(V,start,end) + w(end, start)}.
start,ende V

Bellman-Held-Karp algorithm complexity

m There are 2" subsets.

m Each subset has at most n choices of start, prev, end.

m This gives a complexity of

O(n®-2") = 0% (2M).

Quantum algorithm outline

m Precompute D(S, start, end) for small sets S.

m Use Grover's search to find the optimal way to to combine
these small paths into a cycle.

Classical precomputation

m Computing D(S, start,end) for every S : |S| < t- n and every
start, end takes time

(% 0)-oe

k=0

where H is the binary entropy function.

m Our algorithm starts by doing this for sets of size up to 0.24n,
with a time complexity of

o} (2H(°~24)"> ~ 0%(1.73").

City set splits

m We can split the set into halves of size n/2 in (n72) ways.

m For each split, also choose the start and end vertices, giving
only an n* factor.

City set splits

m Now we find paths in each half separately.

m We can split these further into parts of size n/4.

m Finally, we split those into parts of size 0.24n and 0.01n,
where we have already computed the optimal paths.

Quantum search over splits

m Classically searching over these splits takes time

0" ((2) (r/e) (o))

m Grover's search takes time

o (Y () (2 (goan)) =07

Overall complexity

m the value 0.24 balances the O* complexity of the classical
precompution and the quantum search.

m This gives an 0"(1.73") quantum algorithm for the TSP, an
improvement over the O*(2") classical one.

Generalization

m This algorithm works for optimization problems OPT with the
following property:

OPT(S) = min {OPT(T)+OPT(S\ T)+ (S, T)}.

[TT=k

m This includes FEEDBACK ARC SET and, with some
modifications, MINIMUM SET COVER.

BHK algorithm generalization

m The Bellman-Held-Karp algorithm does not require such
splits.

m For it a weaker property is sufficient:

OPT(S) = rvneig{OPT(S \{v})+f(S5,v)}

Path in the Hypercube

on

m Boolean hypercube {0,1}", edges x — y if |x| +1 = |y]|.
m Input: a subgraph G.
m Output: is there a path from 0" to 1" in G?

Layers

m Select a constant number of layers with a fixed Hamming
weight.

Classical precomputation

m Classically precompute which vertices are reachable from 0"
up to the first layer.

m Symmetrically find paths from the last layer to 1".

Quantum Search

m To find whether a vertex x in a further layer is reachable,
perform Grover's search over vertices of the previous layer.

m Find each such vertex y, find a path between y and x
recursively.

Overall Complexity

—_n
Qp41N = 35

on 1"

m Perform Grover's search to find a vertex x in the middle layer
reachable from both sides.

m The overall complexity is O*(1.817").

Applications

m Vertex ordering problems:
TREEWIDTH*, MINIMUM FILL-IN*, PATHWIDTH, SUM
Cut, MINIMUM INTERVAL GRAPH COMPLETION,
CuTwiIDTH and OPTIMAL LINEAR ARRANGEMENT.

m With modifications to take advantage of knowing the number
of edges in G, GRAPH BANDWIDTH.

Summary

Classical (best known)

Quantum (this work)

Travelling Salesman Problem Oo(n°2") 0*(1.728")
Feedback Arc Set o*(2") 07(1.728")
Minimum Set Cover O(nm2") O(poly(m, n)1.728")
Path in the Hypercube O(n2") 07(1.817")
Vertex Ordering Problems o*(2") 07(1.817")
Graph Bandwidth 0*(4.383") 0*(2.946")

Open questions

m Quadratic speedup?
m Lower bounds?

m Subexponential memory?

Thank you!

	

