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This book provides a frequentist semantics for condition-
alization on partially known events, which is given as
a straightforward generalization of classical conditional
probability via so-called probability testbeds. It analyzes the
resulting partial conditionalization, called frequentist partial
(F.P.) conditionalization, from different angles, i.e., with re-
spect to partitions, segmentation, independence, and chaining.
It turns out that F.P. conditionalization meets and general-
izes Jeffrey conditionalization, i.e., from partitions to arbitrary
collections of events, opening it for reassessment and a range
of potential applications. A counterpart of Jeffrey’s rule for
the case of independence holds in our frequentist semantics.
This result is compared to Jeffrey’s commutative chaining of
independent updates.

The postulate of Jeffrey’s probability kinematics, which is
rooted in the subjectivism of Frank P. Ramsey, is found
to be a consequence in our frequentist semantics. This
way the book creates a link between the Kolmogorov
system of probability and one of the important Bayesian
frameworks. Furthermore, it shows a preservation result for
conditional probabilities under the full update range and com-
pares F.P. semantics with an operational semantics of classical
conditional probability in terms of so-called conditional events.
Lastly, it looks at the subjectivist notion of desirabilities and
proposes a more fine-grained analysis of desirabilities a poste-
riori.
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Motivation

Classical Conditional Probability

P(A|B) =
P(AB)

P(B)
P(A|B1 · · ·Bm) =

P(AB1 · · ·Bm)

P(B1 · · ·Bm)
(1)

Partial Conditionalization

P(A |B1 ≡ b1, . . . , Bm ≡ bm) = ??? (2)

Classical Conditional Probability as Special Case of Partial Conditionalization

P(A|B1 · · ·Bm) = P(A |B1 ≡ 100%, . . . , Bm ≡ 100%) (3)

P(A|B1 · · ·Bm) = P(A |B1 ≡ 0%, . . . , Bm ≡ 0%) (4)

Richard C. Jeffrey. The Logic of Decision, 2nd edition, University of Chicago Press,
1983.
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Jeffrey Conditionalization

Assumption / Pre-Condition: the events B1, . . . , Bm form a partition !

P(A |B1 ≡ b1, . . . , Bm ≡ bm)J =
m∑

i = 1
P(Bi) 6= 0

bi · P(A |Bi) (5)

P(A |B ≡ b)J = b · P(A |B) + (1− b) · P(A |B) (6)

Original Jeffrey Notation

PROB(A) =
m∑

i = 1
P(Bi) 6= 0

PROB(Bi) · prob(A |Bi) (7)
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Derivation of Jeffrey’s Rule in Probability Kinematics

Definition 1 (Jeffrey’s Postulate) We say that Jeffrey’s postulate holds iff
Given an a priori probability P, an a posteriori probability PB with a list of updates
B = B1 ≡ b1, . . . , Bn ≡ bn, we have that all probabilities conditional on some event from
B1, . . . , Bn are preserved after update as long as B1, . . . , Bn forms a partition, i.e., we
have that the following holds for all events A:

B1, . . . , Bn forms a partition⇒ PB(A|Bi) = P(A|Bi) for all Bi ∈ B (8)

Due to the law of total probability we have:

PB(A) =
m∑

i = 1
P(Bi) 6= 0

PB(Bi) · PB(A|Bi) (9)

Due to Jeffrey’s postulate we have:

PB(A) =
m∑

i = 1
P(Bi) 6= 0

bi︷ ︸︸ ︷
PB(Bi) ·P(A|Bi) (10)
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Frequentist Partial (F.P.) Conditionalization

Definition 2 (Bounded F.P. Conditionalization) Given an i.i.d.sequence
of multivariate characteristic random variables (〈A,B1, . . . , Bm〉(j))j∈N, a list of rational
numbers b1, . . . , bm and a bound n ∈ N such that 0 6 bi 6 1 and nbi ∈ N for all bi in
b1, . . . , bm. We define the probability of A conditional on B1 ≡ b1 through Bm ≡ bm
bounded by n, which is denoted by Pn(A | B1 ≡ b1, . . . , Bm ≡ bm), as follows:

Pn(A | B1 ≡ b1, . . . , Bm ≡ bm) = E(An | B1
n=b1, . . . , Bm

n=bm)

Lemma 1 (Compact Bounded F.P. Conditionalization) Given an F.P. conditional-
ization Pn(A | B1 ≡ b1, . . . , Bm ≡ bm) we have that the following holds:

Pn(A | B1 ≡ b1, . . . , Bm ≡ bm) = P(A | B1
n=b1, . . . , Bm

n=bm) (11)

Definition 3 (F.P. Conditionalization) Given an i.i.d.sequence of multivariate
characteristic random variables (〈A,B1, . . . , Bm〉(j))j∈N and a list of rational numbers
b = b1, . . . , bm such that 0 6 bi 6 1 for all bi in b. We define the probability of A
conditional on B1 ≡ b1 through Bm ≡ bm, denoted by P(A | B1 ≡ b1, . . . , Bm ≡ bm), as

P(A | B1≡b1, . . . , Bm≡bm) = lim
k→∞

P k·lcd(b)(A | B1≡b1, . . . , Bm≡bm) (12)
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F.P. Semantics of Jeffrey Conditionalization

Theorem 1 (F.P. Conditionalization over Partitions) Given an F.P. conditionaliza-
tion P(A | B1 ≡ b1, . . . , Bm ≡ bm) such that the events B1, . . . , Bm form a partition, and,
furthermore, the frequencies b1, . . . , bm sum up to one, we have the following:

P(A |B1 ≡ b1, . . . , Bm ≡ bm) =
∑

1 6 i 6 m
P(Bi) 6= 0

bi · P(A |Bi) (13)
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Cutting Repetitions

Lemma 2 (Shortening and Adjusting) Given a sequence of i.i.d. characteristic ran-
dom variables (Bi)i∈N, a number of repetitions n ∈ N and (absolute) frequencies
1 6 k 6 n and 0 6 k′ < n we have the following:

(B , Bn = k) = (B , B(2) + . . .+B(n) = k − 1) (14)
(B , Bn = k′) = (B , B(2) + . . .+B(n) = k′) (15)
(B , Bn = 0) = ∅ (16)
(B , Bn = n) = ∅ (17)

P(B , Bn = k) = P(B(1) , B(2) + . . .+B(n) = k − 1) (18)
= P(B(1)) · P(B(2) + . . .+B(n) = k − 1) (19)
= P(B(1)) · P(B(1) + . . .+B(n−1) = k − 1) (20)

= P(B) · P(Bn−1 = k − 1) (21)

P(B,Bn = k) = P(B) · P(Bn−1 = k) (22)
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Definition 4 (Binomial Distribution) Given a Bernoulli experiment with
success probability p, a number n ∈ N of experiment repetitions and a number of
successes 0 6 k 6 n. The binomial distribution w.r.t. to n and p, denoted by Bn,p,
determines the probability of k successes after n experiment repetitions as follows:

Bn,p(k) =
(n
k

)
pk (1− p)n−k (23)

Definition 5 (Multinomial Distribution) Given an experiment
with m mutually exclusive success categories and success probabilities p1, . . . , pm (i.e.,
such that p1 + · · ·+ pm = 1), a number n ∈ N of repetitions and numbers of successes
k1, . . . , km for each category such that k1 + · · · + km = n. The multinomial distribu-
tion w.r.t. to n and p1, . . . , pm, denoted by Mn,p1,...,pm determines the probability of kj
successes in all of the success categories j after n experiment repetitions as follows:

Mn,p1,...,pm(k1, . . . , km) =
n!

k1! · · · km!
p
k1
1 · · · p

km
m (24)

P(An = k) = Bn,P(A)(k)

A1,..., Am is a partition⇒ P(An1 = k1,..., A
n
m = km) = Mn,P(A1),...,P(Am)(k1,..., km)
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Proof of Theorem 1

Proof. We proof Eqn. (13) for all of its approximations. Due to Lemma 1 we have
that Pn(A |B1 ≡ b1, . . . , Bm ≡ bm) equals

P(A,Bn
1 = b1n, . . . , B

n
m = bmn)

P(Bn
1 = b1n, . . . , Bn

m = bmn)
(25)

Due to the fact that B1, . . . , Bm form a partition we can apply the law of total probability,
to segment Eqn. (25) yielding

∑
1 6 i 6 m
P(Bi) 6= 0

P(A,Bi, B
n
1 = b1n, . . . , B

n
m = bmn)

P(Bn
1 = b1n, . . . , Bn

m = bmn)
(26)
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Due to the fact that B1, . . . , Bm forms a partition, we can rewrite Eqn. (26) as

∑
1 6 i 6 m
P(Bi) 6= 0

P(A,Bi, ∩
j 6=i

Bj, B
n
i = bin, ∩

j 6=i
Bn
j = bjn)

P(Bn
1 = b1n, . . . , Bn

m = bmn)
(27)

We show that each summand in Eqn. (27) equals bi · P(A|Bi) for all 1 6 i 6 m such
that P(Bi) 6= 0. In case bi = 0 we know that P(Bi, B

n
i = bin) = 0 by Eqn. (16) so

that the whole summand equals zero which equals 0 · P(A|Bi) and we are done. In case
bi 6= 0 we can apply Eqn. (14) one time to shorten and adjust Bn

i = bin and furthermore
Eqn. (15) (m-1)-times to shorten Bn

j = bjn for all j 6= i which turns the i-th summand
into

P(A,Bi, ∩
j 6=i

Bj, Bi(2) + · · ·+Bi(n) = bin−1, ∩
j 6=i

Bj(2) + · · ·+Bj(n) = bjn)

P(Bn
1 = b1n, . . . , Bn

m = bmn)
(28)

Due to the fact that B1,..., Bm form a partition we can remove all Bj from Eqn. (28).
Now, due to the fact that (〈A,B1, . . . , Bm〉(i))i∈N is i.i.d. we can cut off P(ABi) in
Eqn. (28) yielding

P(ABi) · P(Bi(2) + · · ·+Bi(n) = bin−1, ∩
j 6=i

Bj(2) + · · ·+Bj(n) = bjn)

P(Bn
1 = b1n, . . . , Bn

m = bmn)
(29)
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Once more, according to Eqn. (26) we can assume that P(Bi) 6= 0. Therefore, due to
P(ABi) = P(A|Bi) · P(Bi) and, furthermore, by shifting the sums we can turn Eqn. (29)
into

P(A|Bi)︸ ︷︷ ︸
γi

·

ηi︷ ︸︸ ︷
P(Bi) · P

(
Bn−1
i =bin−1 , ∩

j 6=i
Bn−1
j =bjn

)
P(Bn

1 = b1n, . . . , Bn
m = bmn)︸ ︷︷ ︸

δi

(30)

Given Eqn. (30), it remains to be shown that δi = bi. Now, we can again exploit that
B1, . . . , B2 form a partition. Due to this we have that (〈B1, . . . , Bm〉(i))i∈N determines
multinomial distributions Mn,P(B1),...,P(Bm) and Mn−1,P(B1),...,P(Bm) in Eqn. (30). Due to
this together with the Lemma’s premise that b1 + · · ·+ bm = 1 we can resolve factor δi
combinatorially yielding

P(Bi) ·
(n− 1)!

(bi · n− 1)!
∏
j 6=i

(bjn)!
· P(Bi)

bi·n−1 ·
∏
j 6=i

P(Bj)
bjn

/
n!∏

j∈I
(bjn)!

·
∏
j∈I

P(Bj)
bjn (31)

Finally, after cancellation of
∏
j 6=i(bjn)! and all P(B···)··· we arrive at

(n− 1)!

(bin− 1)!

/
n!

(bin)!
=

n! · bin
n · (bin)!

·
(bin)!

n!
= bi 2



F.P.-Jeffrey Entailment

Theorem 2 (Preservation of Conditional Probabilities w.r.t. Partitions)
Given an F.P. conditionalization PB(A) =P(A|B1≡ b1,..., Bm≡ bm) such that the events
B1,..., Bm form a partition we have that the conditional probability P(A|Bi) is preserved
after update according to B for all condition events Bi in B1, . . . , Bm, i.e.:

PB(A|Bi) = P(A|Bi) (32)

Proof. We have that PB(A|Bi) equals PB(ABi)/PB(Bi). Due to the lemma’s premise
that B1, . . . , Bm form a partition and Theorem 1 we have that PB(ABi)/PB(Bi) equals

∑
1 6 j 6 m
P(Bj) 6= 0

bj · P(ABi |Bj)
/ ∑

1 6 j 6 m
P(Bj) 6= 0

bj · P(Bi |Bj) (33)

We have that Eqn. (33) equals (bi · P(ABi|Bi))
/

(bi · P(Bi|Bi)) wich equals P(A|Bi). 2
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Conclusion

• A frequentist semantics for conditionalization on partially known events, which is
given as a straightforward generalization of classical conditional probability via so-
called probability testbeds – frequentist partial (F.P.) conditionalization.

• F.P. conditionalization meets and generalizes Jeffrey conditionalization, i.e., from
partitions to arbitrary collections of events, opening it for reassessment and a range
of potential applications.

• The postulate of Jeffrey’s probability kinematics, which is rooted in the subjectivism
of Frank P. Ramsey, is found to be a consequence in our frequentist semantics. This
way the F.P. conditionalization creates a link between the Kolmogorov system of
probability and one of the important Bayesian frameworks.
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Further Results in the Book

• Analysis of F.P. conditionalization from different angles, i.e., with respect to parti-
tions, segmentation, independence, and chaining.

• A counterpart of Jeffrey’s rule for the case of independence holds in our frequentist
semantics. This result is compared to Jeffrey’s commutative chaining of indepen-
dent updates.

• Comparison of F.P. semantics with an operational semantics of classical conditional
probability in terms of so-called conditional events.

• F.P. semantics of the subjectivist notion of desirabilities and a more fine-grained
analysis of desirabilities a posteriori.
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Further Work

• Integration of partial conditionalization into association rule mining.
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April 2017

This book takes a foundational approach to the semantics of
probabilistic programming. It elaborates a rigorous Markov
chain semantics for the probabilistic typed lambda calculus,
which is the typed lambda calculus with recursion plus prob-
abilistic choice. The book starts with a recapitulation of the
basic mathematical tools needed throughout the book, in par-
ticular Markov chains, graph theory and domain theory, and also
explores the topic of inductive definitions. It then defines the
syntax and establishes the Markov chain semantics of the prob-
abilistic lambda calculus and, furthermore, both a graph and a
tree semantics. Based on that, it investigates the termination
behavior of probabilistic programs. It introduces the notions of
termination degree, bounded termination and path stoppability
and investigates their mutual relationships. Lastly, it defines
a denotational semantics of the probabilistic lambda calculus,
based on continuous functions over probability distributions as
domains.
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This book provides a frequentist semantics for condition-
alization on partially known events, which is given as
a straightforward generalization of classical conditional
probability via so-called probability testbeds. It analyzes the
resulting partial conditionalization, called frequentist partial
(F.P.) conditionalization, from different angles, i.e., with re-
spect to partitions, segmentation, independence, and chaining.
It turns out that F.P. conditionalization meets and general-
izes Jeffrey conditionalization, i.e., from partitions to arbitrary
collections of events, opening it for reassessment and a range
of potential applications. A counterpart of Jeffrey’s rule for
the case of independence holds in our frequentist semantics.
This result is compared to Jeffrey’s commutative chaining of
independent updates.

The postulate of Jeffrey’s probability kinematics, which is
rooted in the subjectivism of Frank P. Ramsey, is found
to be a consequence in our frequentist semantics. This
way the book creates a link between the Kolmogorov
system of probability and one of the important Bayesian
frameworks. Furthermore, it shows a preservation result for
conditional probabilities under the full update range and com-
pares F.P. semantics with an operational semantics of classical
conditional probability in terms of so-called conditional events.
Lastly, it looks at the subjectivist notion of desirabilities and
proposes a more fine-grained analysis of desirabilities a poste-
riori.
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Definition 6 (σ-Algebra) Given a set Ω, a σ-Algebra Σ over Ω is a set of subsets of
Ω, i.e., Σ ⊆ P(Ω), such that the following conditions hold true:
1) Ω ∈ Σ

2) If A ∈ Σ then Ω\A ∈ Σ

3) For all countable subsets of Σ, i.e., A0, A1, A2 . . . ∈ Σ it holds true that ∪
i∈N

Ai ∈ Σ

Definition 7 (Probability Space) A probability space (Ω,Σ,P) consists of a set of
outcomes Ω, a σ-algebra of (random) events Σ over the set of outcomes Ω and a
probability function P : Σ → R, also called probability measure, such that the following
axioms hold true:
1) ∀A ∈ Σ . 0 6 P(A) 6 1 (i.e., P : Σ→ [0,1])
2) P(Ω) = 1

3) (Countable Additivity): For all countable sets of pairwise disjoint events, i.e.,
A0, A1, A2 . . . ∈ Σ with Ai∩Aj=∅ for all i 6= j, it holds true that

P
( ∞⋃
i=0

Ai
)

=
∞∑
i=0

P(Ai)
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Definition 8 (Measurable Space, Measurable Function) Given two
measurable spaces (X,Σ) and (Y,Σ′), i.e., sets X and Y equipped with a σ-algebra Σ
over X and a σ-algebra Σ′ over Y . A function f : X → Y is called a measurable function,
also written as f : (X,Σ)→ (Y,Σ′), if for all sets U ∈ Σ′ we have that the inverse image
f−1(U) is an element of Σ.

Definition 9 (Random Variable) A random variable X based on a probability space
(Ω,Σ,P) is a measurable function X : (Ω,Σ)→ (I,Σ′) with so-called indicator set I.
The notation (X = i) is used to denote the inverse image X−1(i) of an element i ∈ I
under f . It is usual to omit the σ-algebras in the definition of concrete random variables
X : (Ω,Σ)→ (I,Σ′) and specify them in terms of functions X : Ω→ I only. A random
variable X : Ω → I is called a discrete random variable if X†(Ω) is at most countable
infinite.

Definition 10 (Expected Value) Given a real-valued discrete random variable
X : Ω→ I with indicator set I = {i0, i1, i2, . . .} ⊆ R based on (Ω,Σ,P), the expected
value E(X), or expectation of X (where E can also be denoted as EP in so-called explicit
notation) is defined as follows:

E(X) =
∞∑
n=0

in · P(X = in) (34)



Definition 11 (Conditional Expected Value) Given a real-valued discrete random
variable X : Ω → I with indicator set I = {i0, i1, i2, . . .} ⊆ R based on a probability
space (Ω,Σ,P) and an event A ∈ Σ, the expected value E(X) of X conditional on A

(where E can also be denoted as EP in so-called explicit notation) is defined as follows:

E(X|A) =
∞∑
n=0

in · P(X = in |A) (35)

Definition 12 (Partition) Given a set M , a countable collection B1, B2 . . . of subsets
of M is called a partition (of M) if Bi ∩Bj = ∅ for all i 6= j and ∪{Bi | i > 1} = M .

Definition 13 (Independent Random Variables) Given two discrete random variables
X : Ω→ I1 and Y : Ω→ I2, we say that X and Y are independent, if the following holds
for all index values v ∈ I1 and v′ ∈ I2:

P(X = v, Y = v′) = P(X = v) · P(Y = v′) (36)

Definition 14 (Pairwise Independence) Given a finite list of discrete random vari-
ables X1 : Ω→ I1 through Xn : Ω→ In, we say that X1, . . . , Xn are pairwise independent,
if Xi and Xj are independent for any two random variables Xi 6= Xj from X1, . . . , Xn.



Definition 15 (Mutual Indepence) Given a finite list of discrete random variables
X1 : Ω → I1 through Xn : Ω → In, we say that X1, . . . , Xn are (mutually) independent,
if the following holds for all index values v1 ∈ I1 through vn ∈ In:

P(X1 = v1, . . . , Xn = vn) = P(X1 = v1)× · · · × P(Xn = vn) (37)

Definition 16 (Countable Independence) Given a sequence of discrete random vari-
ables (Xi : Ω→ Ii)i∈N we say that they are (all) independent, if for each finite set of
indices i1, . . . , im we have that Xi1, . . . , Xim are mutually independent.

Definition 17 (Identically Distributed Random Variables) Given random variables
X : Ω → I and Y : Ω → I, we say that X and Y are identically distributed, if the
following holds for all v ∈ I:

P(X = v) = P(Y = v) (38)

Definition 18 (Independent, Identically Distributed) Given two random
variables X : Ω→ I and Y : Ω→ I, we say that and X and Y are independent identically
distributed, abbreviated as i.i.d., if they are both independent and identically distributed.



Definition 19 (Sequence of i.i.d. Random Variables) Random variables (Xi)i∈N
are called independent identically distributed, again abbreviated as i.i.d., if they are all
independent and, furthermore, all identically distributed.

Definition 20 (Multivariate Random Variable) Given a list of n so-called
marginal random variables X1 : Ω −→ I1 to Xn : Ω −→ In, we define the multivariate
random variable 〈X1, . . . , Xn〉 : Ω −→ I1 × · · · × In for all outcomes ω ∈ Ω as follows:

〈X1, . . . , Xn〉(ω) = 〈X1(ω), . . . , Xn(ω)〉 (39)

P(〈X1, . . . , Xn〉 = 〈i1, . . . , in〉) = P(X1 = i1, . . . , Xn = in) (40)

Corollary 1 (I.I.D. Multivariate Random Variable Marginals) Given a
sequence of i.i.d. multivariate random variables (〈X1, . . . , Xn〉i)i∈N we have that all
marginal sequences ((X1)i)i∈N through ((Xn)i)i∈N are i.i.d.

(X + Y )(ω) = X(ω) + Y (ω) (41)



((X + Y ) = r) = { ω |X(ω) + Y (ω) = r} (42)

P((X + Y ) = r) =
∑

rx+ry=r

P(X = rx, Y = ry) (43)

Convention 1 (Sum of Random Variables from First Position) Given an infinite se-
quence of real-valued random variables (Xi)i∈N we use Xn to denote the sum of the
first n random variables X1+· · ·+Xn

Convention 2 (Sum of Random Variables from Arbitrary Position) Given an
infinite sequence of real-valued random variables (Xi)i∈N and a starting position j we
use Xn

j to denote the sum Xj+Xj+1 +· · ·+Xj+n−1. Obviously, we have that Xn = Xn
1 .

P(Xi1 + · · ·+Xin = r) = P(Xj1 + · · ·+Xjn = r) (44)

P( ∩
16k6m

(Xk)i1 + · · ·+ (Xk)in = rk) = P( ∩
16k6m

(Xk)j1 + · · ·+ (Xk)jn = rk) (45)

X0(ω) = 0 (46)



(r ·X)(ω) = r ·X(ω) (47)

P(r ·X = i) = P(X = i/r) (48)

Xn = 1/n ·Xn (49)

P(An = k) =
∑

I = {i1, . . . , ik}
I ′ = {i′1, . . . , i′n−k}
I ∪ I ′ = {1, . . . , n}

P(A(i1) = 1, . . . , A(ik) = 1, A(i′1) = 0, . . . , A(i′n−k) = 0) (50)

E(X + Y | C) = E(X|C) + E(Y |C) (51)

E(a ·X + b · Y | C) = a · E(Y |C) + b · E(X|C) (52)

∀ 16 i6n.E(Xi|C)=E(X|C)⇒ E(Xn | C) = n · E(X | C) (53)

∀ 16 i6n.E(Xi|C)=E(X|C)⇒ E(Xn | C) = E(X | C) (54)

X:Ω→{0,1}, ∀16i6n.P(Xi|C)=P(X|C)⇒∀16i6n.E(Xi|C)=P(X|C) (55)



X : Ω→ {0,1}, ∀ 16 i6n.P(Xi|C)=P(X|C)⇒ E(Xn | C) = P(X | C) (56)

Lemma 3 (Projective F.P. Conditionalizations) Given a collection of probability spec-
ifications B1 ≡ b1, . . . , Bm ≡ bm we have the following for each 1 6 i 6 m:

P(Bi | B1 ≡ b1, . . . , Bm ≡ bm) = bi (57)

Lemma 4 (I.I.D. Multivariate Random Variable Independencies) Given a sequence
of i.i.d. multivariate random variables (〈X1, . . . , Xn〉i)i∈N, a finite set C ⊂ N of column
indices and a set Rc ⊆ {1, . . . , n} of row indices for each c ∈ C. Then, for all families of
index values ((iρκ : Iρ)ρ∈Rκ)κ∈C we have that the following column-wise independence
holds:

P(
⋂
c∈C

⋂
r∈Rc

Xrc = irc) =
∏
c∈C

P(
⋂
r∈Rc

Xrc = irc) (58)

Corollary 2 (I.I.D. Multivariate Random Variable Independencies)
Given a sequence of i.i.d. multivariate random variables (〈X1, . . . , Xn〉i)i∈N such that
X1, . . . , Xn are mutually independent, we have that the following holds for each index
set of tuples I ⊆ N× N:

P(
⋂
〈i,j〉∈I

Xij)) =
∏
〈i,j〉∈I

P(Xij) (59)



Lemma 5 (Identical Probabilities of Target Event Repetitions) Given an
F.P. conditionalization Pn(A | B1 ≡ b1, . . . , Bm ≡ bm) we have that the probability of A(σ)
conditional on the given frequency specification is equal for all repetitions 1 6 σ 6 n,
i.e., we have for some value ν:

P(A(σ) | B1
n=b1, . . . , Bm

n=bm) = ν (60)

Lemma 6 (Preservation of Independence under Aggregates) Given m collections
of real-valued random variables X11, . . . , X1n1

through Xm1, . . . , Xmnm such that X11, . . . , X1n1
, . . . , Xm1, . . . , Xmnm

are mutually independent, we have that the following holds true for all real numbers
k1, . . . , km:

P(Xn1
1 =k1, . . . , X

nm
m =km) = P(Xn1

1 =k1)× · · · × P(Xnm
m =km) (61)

Lemma 7 (Law of Total Probabilities) Given a probability space (Ω,Σ,P), an event
A ⊆ Ω and a countable set of events B1, B2 . . . that form a partition of Ω, we have that

P(A) =
∑
i>1

P(ABi) (62)

P(A) =
∑
i > 1

P(Bi) 6= 0

P(Bi) · P(A|Bi) (63)


