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Two main types of sharing

I x = 2+4+7 = 13 = 5 (mod 23)

good for linear operations
I y = 3 + 1 + 0 = 4 (mod 23)
I x + y = 2 + 3 + 4 + 1 + 7 + 0 = 17 = 1 (mod 23)
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Sharing a bit: over Z2 vs over Z2n

There exists Share conversion SMC protocol: Z2 → Z2n

I Let us use it as a black box.
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The first method for Zn
2 → Z2n: bitwise conversion

I x = 010⊕ 100⊕ 011 = 1012 = 5

I x = (4 ·4+2 ·0+0)+ (4 ·2+2 ·0+0)+ (4 ·3+2 ·0+1) =
16 + 8 + 12 + 1 = 37 = 5 (mod 23)

I Need n share conversions for n-bit numbers.
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Sharing in Z2n is a sum of sharings over Zn
2

This gives us conversion: Z2n → Zn
2

I We can apply the same idea for Zn
2 → Z2n .
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The second method for Zn
2 → Z2n: bitwise subtraction

I x = 010⊕ 100⊕ 011 = 1012 = 5

I r = 100⊕ 111⊕ 100 = 1112 = 7
I Open r to Alice, and x - r to Bob, let Chris take 0.
I r + x - r + 0 = x
I Need one bitwise subtraction of an n-bit number.

8 / 18



The second method for Zn
2 → Z2n: bitwise subtraction

I x = 010⊕ 100⊕ 011 = 1012 = 5
I r = 100⊕ 111⊕ 100 = 1112 = 7

I Open r to Alice, and x - r to Bob, let Chris take 0.
I r + x - r + 0 = x
I Need one bitwise subtraction of an n-bit number.

8 / 18



The second method for Zn
2 → Z2n: bitwise subtraction

I x = 010⊕ 100⊕ 011 = 1012 = 5
I r = 100⊕ 111⊕ 100 = 1112 = 7
I Open r to Alice, and x - r to Bob, let Chris take 0.

I r + x - r + 0 = x
I Need one bitwise subtraction of an n-bit number.

8 / 18



The second method for Zn
2 → Z2n: bitwise subtraction

I x = 010⊕ 100⊕ 011 = 1012 = 5
I r = 100⊕ 111⊕ 100 = 1112 = 7
I Open r to Alice, and x - r to Bob, let Chris take 0.
I r + x - r + 0 = x

I Need one bitwise subtraction of an n-bit number.

8 / 18



The second method for Zn
2 → Z2n: bitwise subtraction

I x = 010⊕ 100⊕ 011 = 1012 = 5
I r = 100⊕ 111⊕ 100 = 1112 = 7
I Open r to Alice, and x - r to Bob, let Chris take 0.
I r + x - r + 0 = x
I Need one bitwise subtraction of an n-bit number.

8 / 18



The bitwise subtraction protocol

I Let JxK = (x , x , x) denote a secret-shared value x .

Algorithm 1: Secure subtraction of XOR-shared numbers
Data: n ∈ N, shared bits Jx0K, . . . , Jxn−1K, Jy0K, . . . , Jyn−1K ∈ Z2

1 Jc0K = 0
2 for k = 0 to n − 1 do
3 JskK = JxkK⊕ JykK⊕ JckK;
4 Jck+1K = ((JckK⊕ JykK)∧(JckK⊕ JskK))⊕ JckK
5 end
6 Return Js0K, . . . , Jsn−1K.

Uses n secure AND-s.
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Comparing the two methods

I Bitwise subtraction: generic, uses only secure AND / XOR.
I The complexity is n ANDs.
I (+ opening of x and x − r ).

I Bitwise conversion: elaborated, uses 3-party benefits.
I The complexity is n conversions Z2 → Z2n .
I Was preferred by Sharemind system.
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Assisted 2-party computation using correlated
randomness

I Beaver triples: (JaK, JbK, JcK) where a,b $← Z2n , c = a · b.
I Complexity of generating one n-bit triple is O(n).

I Trusted bits: JbK where b $← Z2 is shared over Z2n .
I Complexity of generating one trusted bit is O(n).
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Using trusted bits for Zn
2 → Z2n (previous work)

I x = 110⊕ 011 = 1012

I x1 = 1, x2 = 0, x3 = 1
I x = b3b2b1 ⊕ b3b2b1 = 1012

I x = (4 ·b3 +2 ·b2 +b1)+ (4 ·b3 +2 ·b2 +b1) = 5 (mod 23)
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2 → Z2n (this work)
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I r = 010⊕ 100 = 1102
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Summary for assisted 2-party Zn
2 ↔ Z2n conversions

correlated communication cost
randomness preprocessing verification

Bitwise conversion Beaver triples 2 · n2 n
Bitwise addition trusted bits 2 · 3n 2n

(without taking into account the inside of the Magic Box).
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Sharemind 3-party actively secure computation

1. Precompute sufficiently Beaver triples and trusted bits.
2. Run 3-party passively secure protocol.
3. Run assisted 2-party actively secure protocol to verify each

party’s computation.
I The prover acts as an assistant of the verifiers.
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Improvements for active security
Integer Total bit communication for 32-bit integer protocols
operation Using bitwise conversion (old) Using bitwise addition (new)

JxK · JyK 192 : 768 : 4034
1 : 4 : 21

192 : 768 : 4034
1 : 4 : 21

JxK / JyK 31.7k : 275k : 28M
1 : 8 : 884

31.7k : 358k : 1.7M
1 : 11 : 54

JxK � JyK 1296 : 9374 : 64.6k
1 : 7 : 50

1296 : 9758 : 50.9k
1 : 7 : 39

JxK � JyK 2384 : 53k : 303.6k
1 : 22 : 127

2608 : 53.0k : 278.8k
1.1 : 22.2 : 117

JxK � y 1092 : 9946 : 184.1k
1 : 9 : 169

1092 : 12.5k : 61.2k
1 : 11 : 56

JxK = JyK 218 : 872 : 14.3k
1 : 4 : 66

218 : 1000 : 5252
1 : 4 : 24

Result is of the form x : y : z where
I x is the online passively secure phase;
I y is the verification phase;
I z is the preprocessing phase.
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