Bit Decomposition Protocols in Secure Multiparty Computation

19.10.18

Peeter Laud Alisa Pankova

• $x = 2 + 4 + 7 = 13 = 5 \pmod{2^3}$

► $x = 2 + 4 + 7 = 13 = 5 \pmod{2^3}$ ► $y = 3 + 1 + 0 = 4 \pmod{2^3}$

- $x = 2 + 4 + 7 = 13 = 5 \pmod{2^3}$
- ► $y = 3 + 1 + 0 = 4 \pmod{2^3}$
- ► $x + y = 2 + 3 + 4 + 1 + 7 + 0 = 17 = 1 \pmod{2^3}$

- ► $x = 2 + 4 + 7 = 13 = 5 \pmod{2^3}$ good for linear operations
- $y = 3 + 1 + 0 = 4 \pmod{2^3}$
- ► $x + y = 2 + 3 + 4 + 1 + 7 + 0 = 17 = 1 \pmod{2^3}$

▶ $x = 2 + 4 + 7 = 13 = 5 \pmod{2^3}$ good for linear operations

► $x = 2 + 4 + 7 = 13 = 5 \pmod{2^3}$ good for linear operations ► $x = 010 \oplus 100 \oplus 011 = 101_2$ good for bitwise operations

- ▶ $x = 2 + 4 + 7 = 13 = 5 \pmod{2^3}$ good for linear operations
- ▶ $x = 010 \oplus 100 \oplus 011 = 101_2$ good for bitwise operations
- ► We need to convert between the two sharings Z_{2ⁿ} and Zⁿ₂.

There exists Share conversion SMC protocol: $\mathbb{Z}_2 \to \mathbb{Z}_{2^n}$

Let us use it as a black box.

The first method for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$: bitwise conversion

The first method for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$: bitwise conversion

The first method for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$: bitwise conversion

The first method for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$: bitwise conversion

The first method for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$: bitwise conversion

- $x = 010 \oplus 100 \oplus 011 = 101_2 = 5$ • x = (4, 4 + 2, 0 + 0) + (4, 2 + 0) + (4, 2, 0) + (4, 2, 0 + 0) + (4, 2, 0
- ► $x = (4 \cdot 4 + 2 \cdot 0 + 0) + (4 \cdot 2 + 2 \cdot 0 + 0) + (4 \cdot 3 + 2 \cdot 0 + 1) =$ 16 + 8 + 12 + 1 = 37 = 5 (mod 2³)

The first method for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$: bitwise conversion

- $x = 010 \oplus 100 \oplus 011 = 101_2 = 5$
- ► $x = (4 \cdot 4 + 2 \cdot 0 + 0) + (4 \cdot 2 + 2 \cdot 0 + 0) + (4 \cdot 3 + 2 \cdot 0 + 1) =$ 16 + 8 + 12 + 1 = 37 = 5 (mod 2³)
- Need n share conversions for n-bit numbers.

$$\mathbb{Z}_{2^3}$$
: **1 0 1 + 0 1 1 = 0 0 0**

$$\mathbb{Z}_{2^{3}}: 1 0 1 + 0 1 1 = 0 0 0$$
$$\mathbb{Z}_{2^{3}}: 1 0 1 \oplus 0 0 = 1 0 1$$
$$0 0 \oplus 0 1 1 = 0 1 1$$

$$\mathbb{Z}_{2^{3}}: 1 0 1 + 0 1 1 = 0 0 0$$
$$\mathbb{Z}_{2^{3}}: 1 0 1 \oplus 0 0 = 1 0 1$$
$$0 0 \oplus 0 1 1 = 0 1 1$$
$$1 0 \oplus 1 1 1 = 1 0 1$$

$$\mathbb{Z}_{2^{3}}: \begin{array}{c} 1 & 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 1 & 1 \\ \end{array} = \begin{array}{c} 0 & 0 & 0 \\ \end{array}$$
$$\mathbb{Z}_{2^{3}}: \begin{array}{c} 1 & 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 0 & 0 \\ \end{array} = \begin{array}{c} 1 & 0 & 1 \\ \end{array}$$
$$\begin{array}{c} 0 & 0 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} = \begin{array}{c} 1 & 0 & 1 \\ \end{array}$$
$$\begin{array}{c} 1 & 1 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} = \begin{array}{c} 1 & 0 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} = \begin{array}{c} 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} = \begin{array}{c} 1 & 0 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} = \begin{array}{c} 1 & 0 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} = \begin{array}{c} 0 & 1 \\ \end{array} = \begin{array}{c} 0 & 1 \\ \end{array} = \begin{array}{c} 0 & 1 \\ \end{array} = \begin{array}{c} 1 & 0 \\ \end{array} = \begin{array}{c} 1 & 0 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} = \begin{array}{c} 1 & 0 \\ \end{array} = \begin{array}{c} 0 & 1 \\ \end{array} = \begin{array}{$$

This gives us conversion: $\mathbb{Z}_{2^n} \to \mathbb{Z}_2^n$

$$\mathbb{Z}_{2^{3}}: \begin{array}{c} 1 & 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 1 & 1 \\ \end{array} = \begin{array}{c} 0 & 0 & 0 \\ \end{array}$$
$$\mathbb{Z}_{2^{3}}: \begin{array}{c} 1 & 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 0 & 0 \\ \end{array} = \begin{array}{c} 1 & 0 & 1 \\ \end{array}$$
$$\begin{array}{c} 0 & 0 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} + \begin{array}{c} 0 & 1 \\ \end{array} = \begin{array}{c} 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 1 \\ \end{array} = \begin{array}{c} 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} + \begin{array}{c} 0 & 1 \\ \end{array} = \begin{array}{c} 1 & 1 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} + \begin{array}{c} 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 0 \\ \end{array} + \begin{array}{c} 0 & 1 \end{array} + \begin{array}{c} 0 & 1 \\ \end{array} + \begin{array}{c} 0 & 1 \end{array} + \begin{array}{c} 0 &$$

This gives us conversion: $\mathbb{Z}_{2^n} \to \mathbb{Z}_2^n$

We can apply the same idea for Zⁿ₂ → Z_{2ⁿ}.

The second method for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$: bitwise subtraction

- ▶ $x = 010 \oplus 100 \oplus 011 = 101_2 = 5$
- ▶ $r = 100 \oplus 111 \oplus 100 = 111_2 = 7$

- ► $x = 010 \oplus 100 \oplus 011 = 101_2 = 5$
- ▶ $r = 100 \oplus 111 \oplus 100 = 111_2 = 7$
- Open r to Alice, and x r to Bob, let Chris take 0.

- ▶ $x = 010 \oplus 100 \oplus 011 = 101_2 = 5$
- ▶ $r = 100 \oplus 111 \oplus 100 = 111_2 = 7$
- Open r to Alice, and x r to Bob, let Chris take 0.
- r + x r + 0 = x

- $x = 010 \oplus 100 \oplus 011 = 101_2 = 5$
- ▶ $r = 100 \oplus 111 \oplus 100 = 111_2 = 7$
- Open r to Alice, and x r to Bob, let Chris take 0.
- r + x r + 0 = x
- Need one bitwise subtraction of an *n*-bit number.

The bitwise subtraction protocol

• Let [x] = (x, x, x) denote a secret-shared value x.

Algorithm 1: Secure subtraction of XOR-shared numbers

Data: $n \in \mathbb{N}$, shared bits $[x_0], \dots, [x_{n-1}], [y_0], \dots, [y_{n-1}]] \in \mathbb{Z}_2$ 1 $[c_0] = 0$ 2 for k = 0 to n - 1 do

$$\mathbf{3} \quad [\![\mathbf{s}_k]\!] = [\![\mathbf{x}_k]\!] \oplus [\![\mathbf{y}_k]\!] \oplus [\![\mathbf{c}_k]\!];$$

$$4 \quad \left| \quad \llbracket c_{k+1} \rrbracket = \left(\left(\llbracket c_k \rrbracket \oplus \llbracket y_k \rrbracket \right) \land \left(\llbracket c_k \rrbracket \oplus \llbracket s_k \rrbracket \right) \right) \oplus \llbracket c_k \rrbracket$$

5 end

6 **Return** $[\![s_0]\!], \ldots, [\![s_{n-1}]\!].$

Uses *n* secure AND-s.

Comparing the two methods

- Bitwise subtraction: generic, uses only secure AND / XOR.
 - The complexity is n ANDs.
 - (+ opening of x and x r).
- Bitwise conversion: elaborated, uses 3-party benefits.
 - ► The complexity is *n* conversions Z₂ → Z_{2ⁿ}.
 - Was preferred by Sharemind system.

Assisted 2-party computation using correlated randomness

- ▶ Beaver triples: ([[a]], [[b]], [[c]]) where $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_{2^n}, c = a \cdot b$.
 - Complexity of generating one *n*-bit triple is O(n).

Assisted 2-party computation using correlated randomness

- ▶ Beaver triples: ([[a]], [[b]], [[c]]) where $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_{2^n}, c = a \cdot b$.
 - Complexity of generating one *n*-bit triple is O(n).

Assisted 2-party computation using correlated randomness

- ▶ Beaver triples: ([a], [b], [c]) where $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_{2^n}, c = a \cdot b$.
 - Complexity of generating one *n*-bit triple is O(n).
- ▶ Trusted bits: $\llbracket b \rrbracket$ where $b \stackrel{\$}{\leftarrow} \mathbb{Z}_2$ is shared over \mathbb{Z}_{2^n} .
 - Complexity of generating one trusted bit is O(n).

Using trusted bits for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$ (previous work)

Using trusted bits for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$ (previous work)

Using trusted bits for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$ (previous work)

• $x = 110 \oplus 011 = 101_2$ • $x_1 = 1, x_2 = 0, x_3 = 1$ • $x = \overline{b_3}b_2\overline{b_1} \oplus b_3b_2b_1 = 101_2$ • $x = (4 \cdot \overline{b_3} + 2 \cdot \overline{b_2} + \overline{b_1}) + (4 \cdot \overline{b_3} + 2 \cdot \overline{b_2} + \overline{b_1}) = 5 \pmod{2^3}$

Using trusted bits for $\mathbb{Z}_{2^n} \to \mathbb{Z}_2^n$ (previous work)

x = 6 + 7 = 5 (mod 2³) = 101₂
x₁ = 1, x₂ = 0, x₃ = 1
x = $\overline{b_3}b_2\overline{b_1} \oplus b_3b_2b_1 = 101_2$ x = (4 ⋅ $\overline{b_3}$ + 2 ⋅ $\overline{b_2}$ + $\overline{b_1}$) + (4 ⋅ $\overline{b_3}$ + 2 ⋅ $\overline{b_2}$ + $\overline{b_1}$) = 5 (mod 2³)

Using Beaver triples for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$ (this work)

Using Beaver triples for $\mathbb{Z}_2^n \to \mathbb{Z}_{2^n}$ (this work)

- ▶ $x = 110 \oplus 011 = 101_2$
- ▶ $r = 010 \oplus 100 = 110_2$

- $x = 110 \oplus 011 = 101_2$
- ▶ $r = 010 \oplus 100 = 110_2$

- $x = 110 \oplus 011 = 101_2$
- ▶ $r = 010 \oplus 100 = 110_2$

•
$$x = 6 + 7 = 13 = 5 \pmod{2^3}$$

•
$$x = 6 + 7 = 13 = 5 \pmod{2^3}$$

►
$$x = 6 + 7 = 13 = 5 \pmod{2^3}$$

► $x = (4 \cdot 1 + 2 \cdot 1 + 0) + (4 \cdot 1 + 2 \cdot 1 + 1) = 13 = 5 \pmod{2^3}$

► $x = 6 + 7 = 13 = 5 \pmod{2^3}$ ► $x = (4 \cdot 1 + 2 \cdot 1 + 0) + (4 \cdot 1 + 2 \cdot 1 + 1) = 13 = 5 \pmod{2^3}$

Summary for assisted 2-party $\mathbb{Z}_2^n \leftrightarrow \mathbb{Z}_{2^n}$ conversions

	correlated	communication cost	
	randomness	preprocessing	verification
Bitwise conversion	Beaver triples	2 · <i>n</i> ²	n
Bitwise addition	trusted bits	2 · 3 <i>n</i>	2 <i>n</i>

(without taking into account the inside of the Magic Box).

Sharemind 3-party actively secure computation

- 1. Precompute sufficiently Beaver triples and trusted bits.
- 2. Run 3-party passively secure protocol.
- 3. Run assisted 2-party actively secure protocol to verify each party's computation.
 - The prover acts as an assistant of the verifiers.

Improvements for active security

Integer	Total bit communication for 32-bit integer protocols		
operation	Using bitwise conversion (old)	Using bitwise addition (new)	
$\llbracket x \rrbracket \cdot \llbracket y \rrbracket$	192 : 768 : 4034	192 : 768 : 4034	
	1: 4 : 21	1:4: 21	
$\llbracket x \rrbracket / \llbracket y \rrbracket$	31.7k:275k:28M	31.7k:358k:1.7M	
	1: 8 : 884	1: 11 54	
$\llbracket x \rrbracket \ll \llbracket y \rrbracket$	1296:9374:64.6k	1296:9758:50.9k	
	1: 7 : 50	1: 7 : <mark>39</mark>	
$\llbracket x \rrbracket \gg \llbracket y \rrbracket$	2384:53k:303.6k	2608 : 53.0k : 278.8k	
	1:22: 127	1.1: 22.2 : 117	
$\llbracket x \rrbracket \gg y$	1092:9946:184.1k	1092:12.5k:61.2k	
	1: 9:1 69	1: 11 : 56	
$\llbracket x \rrbracket = \llbracket y \rrbracket$	218:872:14.3k	218:1000:5252	
	1: 4: 66	1 4 24	

Result is of the form *x* : *y* : *z* where

- x is the online passively secure phase;
- y is the verification phase;
- z is the preprocessing phase.