Bit Decomposition Protocols in Secure Multiparty Computation

19.10.18

Peeter Laud Alisa Pankova

PGYBERNETICA

Secure Multiparty Computation

Two main types of sharing

- $x=2+4+7=13=5\left(\bmod 2^{3}\right)$

Two main types of sharing

- $x=2+4+7=13=5\left(\bmod 2^{3}\right)$
- $y=3+1+0=4\left(\bmod 2^{3}\right)$

Two main types of sharing

- $x=2+4+7=13=5\left(\bmod 2^{3}\right)$
- $y=3+1+0=4\left(\bmod 2^{3}\right)$
- $x+y=2+3+4+1+7+0=17=1\left(\bmod 2^{3}\right)$

Two main types of sharing

- $x=2+4+7=13=5\left(\bmod 2^{3}\right)$ good for linear operations
- $y=3+1+0=4\left(\bmod 2^{3}\right)$
- $x+y=2+3+4+1+7+0=17=1\left(\bmod 2^{3}\right)$

Two main types of sharing

- $x=2+4+7=13=5\left(\bmod 2^{3}\right)$ good for linear operations

Two main types of sharing

- $x=2+4+7=13=5\left(\bmod 2^{3}\right)$ good for linear operations
- $x=010 \oplus 100 \oplus 011=101_{2}$ good for bitwise operations

Two main types of sharing

- $x=2+4+7=13=5\left(\bmod 2^{3}\right)$ good for linear operations
- $x=010 \oplus 100 \oplus 011=101_{2}$ good for bitwise operations
- We need to convert between the two sharings $\mathbb{Z}_{2^{n}}$ and \mathbb{Z}_{2}^{n}.

Sharing a bit: over \mathbb{Z}_{2} vs over $\mathbb{Z}_{2^{n}}$

Sharing a bit: over \mathbb{Z}_{2} vs over $\mathbb{Z}_{2^{n}}$

$$
\begin{aligned}
& \mathbb{Z}_{2}: \square \quad 1 \quad \square \quad 1 \quad \begin{array}{|l|l|}
\hline & 0 \\
\hline
\end{array} \\
& \mathbb{Z}_{2^{3}}: \begin{array}{|l|l|l|l|l|l|}
\hline 0 & 0 & 1 \\
\hline
\end{array}+\begin{array}{|l|l|l|}
\hline 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Sharing a bit: over \mathbb{Z}_{2} vs over $\mathbb{Z}_{2^{n}}$

$$
\begin{aligned}
& \mathbb{Z}_{2}: \square \quad \boxed{1}+\square \quad 1=\square \quad 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 \\
\hline
\end{array} \mathbf{|}|0| 0|0| \begin{array}{|l|l|l|}
\hline 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Sharing a bit: over \mathbb{Z}_{2} vs over $\mathbb{Z}_{2^{n}}$

$$
\begin{aligned}
& \mathbb{Z}_{2}: \square \quad 1 \quad \square \quad 1=\square \quad 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 \\
\hline & 0 & 0 & 0 \\
\hline
\end{array}=\begin{array}{|l|l|l|l|l|}
\hline & 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array}+\begin{array}{|l|l|l|l|l|}
\hline 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Sharing a bit: over \mathbb{Z}_{2} vs over $\mathbb{Z}_{2^{n}}$

$$
\begin{aligned}
& \mathbb{Z}_{2}: \square \quad 1 \quad \square \quad 1=\square \quad 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 \\
\hline & 0 & 0 & 0 \\
\hline
\end{array} \begin{array}{|l|l|l|l|l|}
\hline 0 & 0 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

There exists Share conversion SMC protocol: $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2^{n}}$

- Let us use it as a black box.

The first method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise conversion

- $x=010 \oplus 100 \oplus 011=101_{2}=5$

The first method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise conversion

- $x=010 \oplus 100 \oplus 011=101_{2}=5$

The first method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise conversion

- $x=010 \oplus 100 \oplus 011=101_{2}=5$

The first method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise conversion

- $x=010 \oplus 100 \oplus 011=101_{2}=5$

The first method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise conversion

- $x=010 \oplus 100 \oplus 011=101_{2}=5$
- $x=(4 \cdot 4+2 \cdot 0+0)+(4 \cdot 2+2 \cdot 0+0)+(4 \cdot 3+2 \cdot 0+1)=$ $16+8+12+1=37=5\left(\bmod 2^{3}\right)$

The first method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise conversion

- $x=010 \oplus 100 \oplus 011=101_{2}=5$
- $x=(4 \cdot 4+2 \cdot 0+0)+(4 \cdot 2+2 \cdot 0+0)+(4 \cdot 3+2 \cdot 0+1)=$ $16+8+12+1=37=5\left(\bmod 2^{3}\right)$
- Need n share conversions for n-bit numbers.

Sharing in $\mathbb{Z}_{2^{n}}$ is a sum of sharings over \mathbb{Z}_{2}^{n}

$\mathbb{Z}_{2^{3}}$| 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |$+$| 0 | 1 | 1 |
| :--- | :--- | :--- |

Sharing in $\mathbb{Z}_{2^{n}}$ is a sum of sharings over \mathbb{Z}_{2}^{n}

$$
\begin{aligned}
& \mathbb{Z}_{2^{3}}: \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array}+\begin{array}{|l|l|l|}
\hline 0 & 1 & 1 \\
\hline
\end{array}=\begin{array}{|l|l|l|}
\hline & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Sharing in $\mathbb{Z}_{2^{n}}$ is a sum of sharings over \mathbb{Z}_{2}^{n}

$$
\begin{aligned}
& \mathbb{Z}_{2^{3}} \begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array}+\begin{array}{|l|l|l|l|}
\hline 0 & 1 & 1 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 0 & \oplus & 1 & 1 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Sharing in $\mathbb{Z}_{2^{n}}$ is a sum of sharings over \mathbb{Z}_{2}^{n}

$$
\begin{aligned}
& \mathbb{Z}_{2^{3}}: \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array}+\begin{array}{|l|l|l|}
\hline 0 & 1 & 1 \\
\hline
\end{array}=\begin{array}{|l|l|l|}
\hline & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

This gives us conversion: $\mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2}^{n}$

Sharing in $\mathbb{Z}_{2^{n}}$ is a sum of sharings over \mathbb{Z}_{2}^{n}

$$
\begin{aligned}
& \mathbb{Z}_{2^{3}} \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array}+\begin{array}{|l|l|l|l|}
\hline 0 & 1 & 1 & 0 \\
\hline
\end{array} \\
& \mathbb{Z}_{2}^{3}: \left.\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 & \\
\hline
\end{array} \mathbf{|} \right\rvert\, \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

This gives us conversion: $\mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2}^{n}$

- We can apply the same idea for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$.

The second method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise subtraction

- $x=010 \oplus 100 \oplus 011=101_{2}=5$

The second method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise subtraction

- $x=010 \oplus 100 \oplus 011=101_{2}=5$
- $r=100 \oplus 111 \oplus 100=111_{2}=7$

The second method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise subtraction

- $x=010 \oplus 100 \oplus 011=101_{2}=5$
- $r=100 \oplus 111 \oplus 100=111_{2}=7$
- Open r to Alice, and $x-r$ to Bob, let Chris take 0.

The second method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise subtraction

- $x=010 \oplus 100 \oplus 011=101_{2}=5$
- $r=100 \oplus 111 \oplus 100=111_{2}=7$
- Open r to Alice, and $x-r$ to Bob, let Chris take 0.
- $r+x-r+0=x$

The second method for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$: bitwise subtraction

- $x=010 \oplus 100 \oplus 011=101_{2}=5$
- $r=100 \oplus 111 \oplus 100=111_{2}=7$
- Open r to Alice, and $x-r$ to Bob, let Chris take 0.
- $r+x-r+0=x$
- Need one bitwise subtraction of an n-bit number.

The bitwise subtraction protocol

- Let $\llbracket x \rrbracket=(x, x, x)$ denote a secret-shared value x.

Algorithm 1: Secure subtraction of XOR-shared numbers
Data: $n \in \mathbb{N}$, shared bits $\llbracket x_{0} \rrbracket, \ldots, \llbracket x_{n-1} \rrbracket, \llbracket y_{0} \rrbracket, \ldots, \llbracket y_{n-1} \rrbracket \in \mathbb{Z}_{2}$
$1 \llbracket c_{0} \rrbracket=0$
2 for $k=0$ to $n-1$ do
$3 \quad \llbracket s_{k} \rrbracket=\llbracket x_{k} \rrbracket \oplus \llbracket y_{k} \rrbracket \oplus \llbracket c_{k} \rrbracket$;
4
$\llbracket c_{k+1} \rrbracket=\left(\left(\llbracket c_{k} \rrbracket \oplus \llbracket y_{k} \rrbracket\right) \wedge\left(\llbracket c_{k} \rrbracket \oplus \llbracket s_{k} \rrbracket\right)\right) \oplus \llbracket c_{k} \rrbracket$
5 end
6 Return $\llbracket s_{0} \rrbracket, \ldots, \llbracket s_{n-1} \rrbracket$.

Uses n secure AND-s.

Comparing the two methods

- Bitwise subtraction: generic, uses only secure AND / XOR.
- The complexity is n ANDs.
- (+ opening of x and $x-r$).
- Bitwise conversion: elaborated, uses 3-party benefits.
- The complexity is n conversions $\mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2^{n}}$.
- Was preferred by Sharemind system.

Assisted 2-party computation using correlated randomness

- Complexity of generating one n-bit triple is $O(n)$.

Assisted 2-party computation using correlated randomness

- Beaver triples: $(\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket)$ where $a, b{ }^{\Phi} \mathbb{Z}_{2^{n}}, c=a \cdot b$.
- Complexity of generating one n-bit triple is $O(n)$.

Assisted 2-party computation using correlated randomness

- Beaver triples: $(\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket)$ where $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_{2^{n}}, c=a \cdot b$.
- Complexity of generating one n-bit triple is $O(n)$.
- Trusted bits: $\llbracket b \rrbracket$ where $b \stackrel{\$}{\leftarrow} \mathbb{Z}_{2}$ is shared over $\mathbb{Z}_{2^{n}}$.
- Complexity of generating one trusted bit is $O(n)$.

Using trusted bits for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$ (previous work)

Using trusted bits for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$ (previous work)

- $x=110 \oplus 011=101_{2}$
- $x_{1}=1, x_{2}=0, x_{3}=1$

Using trusted bits for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$ (previous work)

- $x=110 \oplus 011=101_{2}$
- $x_{1}=1, x_{2}=0, x_{3}=1$
- $x=\overline{b_{3}} b_{2} \overline{b_{1}} \oplus b_{3} b_{2} b_{1}=101_{2}$
- $x=\left(4 \cdot \overline{b_{3}}+2 \cdot b_{2}+\overline{b_{1}}\right)+\left(4 \cdot b_{3}+2 \cdot b_{2}+b_{1}\right)=5\left(\bmod 2^{3}\right)$

Using trusted bits for $\mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2}^{n}$ (previous work)

- $x=6+7=5\left(\bmod 2^{3}\right)=101_{2}$
- $x_{1}=1, x_{2}=0, x_{3}=1$
- $x=\overline{b_{3}} b_{2} \overline{b_{1}} \oplus b_{3} b_{2} b_{1}=101_{2}$
- $x=\left(4 \cdot \overline{b_{3}}+2 \cdot b_{2}+\overline{b_{1}}\right)+\left(4 \cdot b_{3}+2 \cdot b_{2}+b_{1}\right)=5\left(\bmod 2^{3}\right)$

Using Beaver triples for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$ (this work)

Using Beaver triples for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$ (this work)

- $x=110 \oplus 011=101_{2}$
- $r=010 \oplus 100=110_{2}$

Using Beaver triples for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$ (this work)

- $x=110 \oplus 011=101_{2}$
- $r=010 \oplus 100=110_{2}$

Using Beaver triples for $\mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2^{n}}$ (this work)

- $x=110 \oplus 011=101_{2}$
- $r=010 \oplus 100=110_{2}$

Using Beaver triples for $\mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2}^{n}$ (this work)

- $x=6+7=13=5\left(\bmod 2^{3}\right)$

Using Beaver triples for $\mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2}^{n}$ (this work)

- $x=6+7=13=5\left(\bmod 2^{3}\right)$

Using Beaver triples for $\mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2}^{n}$ (this work)

- $x=6+7=13=5\left(\bmod 2^{3}\right)$
- $x=(4 \cdot 1+2 \cdot 1+0)+(4 \cdot 1+2 \cdot 1+1)=13=5\left(\bmod 2^{3}\right)$

Using Beaver triples for $\mathbb{Z}_{2^{n}} \rightarrow \mathbb{Z}_{2}^{n}$ (this work)

- $x=6+7=13=5\left(\bmod 2^{3}\right)$
- $x=(4 \cdot 1+2 \cdot 1+0)+(4 \cdot 1+2 \cdot 1+1)=13=5\left(\bmod 2^{3}\right)$

Summary for assisted 2-party $\mathbb{Z}_{2}^{n} \leftrightarrow \mathbb{Z}_{2^{n}}$ conversions

	correlated	communication cost	
	randomness	preprocessing	verification
Bitwise conversion	Beaver triples	$2 \cdot n^{2}$	n
Bitwise addition	trusted bits	$2 \cdot 3 n$	$2 n$

(without taking into account the inside of the Magic Box).

Sharemind 3-party actively secure computation

1. Precompute sufficiently Beaver triples and trusted bits.
2. Run 3-party passively secure protocol.
3. Run assisted 2-party actively secure protocol to verify each party's computation.

- The prover acts as an assistant of the verifiers.

Improvements for active security

Integer operation	Total bit communication for 32-bit integer protocols	
	Using bitwise conversion (old)	Using bitwise addition (new)
$\llbracket x \rrbracket \cdot \llbracket y \rrbracket$	$\begin{gathered} 192: 768: 4034 \\ 1: 4: 21 \end{gathered}$	$\begin{gathered} 192: 768: 4034 \\ 1: 4: 21 \end{gathered}$
$\llbracket x \rrbracket / \llbracket y \rrbracket$	$\begin{gathered} 31.7 \mathrm{k}: 275 \mathrm{k}: 28 \mathrm{M} \\ 1: 8: 884 \end{gathered}$	$\begin{gathered} 31.7 \mathrm{k}: 358 \mathrm{k}: 1.7 \mathrm{M} \\ 1: 11: 54 \end{gathered}$
$\llbracket x \rrbracket \ll \llbracket y \rrbracket$	$\begin{gathered} 1296: 9374: 64.6 \mathrm{k} \\ 1: 7: 50 \end{gathered}$	$\begin{gathered} 1296: 9758: 50.9 \mathrm{k} \\ 1: 7: 39 \end{gathered}$
$\llbracket x \rrbracket \gg \llbracket y \rrbracket$	$\begin{gathered} 2384: 53 \mathrm{k}: 303.6 \mathrm{k} \\ 1: 22: 127 \end{gathered}$	$\begin{gathered} 2608: 53.0 \mathrm{k}: 278.8 \mathrm{k} \\ 1.1: 22.2: 117 \end{gathered}$
$\llbracket x \rrbracket \gg y$	$\begin{gathered} 1092: 9946: 184.1 \mathrm{k} \\ 1: 9: 169 \end{gathered}$	$\begin{gathered} 1092: 12.5 \mathrm{k}: 61.2 \mathrm{k} \\ 1: 11: 56 \end{gathered}$
$\llbracket x \rrbracket=\llbracket y \rrbracket$	$\begin{gathered} 218: 872: 14.3 \mathrm{k} \\ 1: 4: 66 \end{gathered}$	$\begin{gathered} 218: 1000: 5252 \\ 1: 4: 24 \end{gathered}$

Result is of the form $x: y: z$ where

- x is the online passively secure phase;
- y is the verification phase;
- z is the preprocessing phase.

