HIGH-DIMENSIONAL REPRESENTATION AND COMPUTING: Word Embeddings

Guntis Barzdins

Concept Mapping to Hypervectors

 Each concept is represented by a 10,000–D hypervector chosen at *random* (independent components) :

$$N_{1} = [-1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 ...]$$

$$N_{2} = [+1 - 1 + 1 + 1 + 1 - 1 + 1 - 1 ...]$$

$$N_{3} = [-1 - 1 - 1 + 1 + 1 - 1 + 1 - 1 ...]$$

$$N_{4} = [-1 - 1 - 1 + 1 + 1 - 1 + 1 - 1 ...]$$

$$N_{64} = [-1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 ...]$$

- Every hypervector is dissimilar to others, e.g., $\langle N_1, N_2 \rangle = 0$
- This assignment is fixed throughout computation

HD Arithmetic

- Addition (+) is good for representing sets, since sum vector is similar to its constituent vectors.
 - 〈A, B〉=0 ~0.1 (100D); ~0.05 (1000D); ~0.01 (10000D)
 - **⟨A, A⟩=1**
 - **〈A+B, A〉=~0.70**
 - │○ **⟨A+B+C, A**⟩=~0.57
 - 〈A+B+C+D, A〉=~0.50
 - 〈A+B+C+D+E, A〉=~0.45

0 ...

[P. Kanerva, Cognitive Computation'09]

Concepts \rightarrow Words

import numpy as np D=10000 def similar(A,B): # Calculate Cosine similarity (normalized dot-product) return np.sum(A*B)/(np.sqrt(np.sum(A*A))*np.sqrt(np.sum(B*B)))

human = np.random.randn(D) leader = np.random.randn(D) male = np.random.randn(D) monarch = np.random.randn(D) female = np.random.randn(D) single = np.random.randn(D) plural = np.random.randn(D) estland = np.random.randn(D) capital = np.random.randn(D) country = np.random.randn(D) letland = np.random.randn(D)

king = human + leader + monarch + male + single man = human + male woman = human + female queen = human + leader + monarch + female + single

print similar(queen, king - man + woman)

estonia = estland + country tallinn = estland + capital latvia = letland + country riga = letland + capital

print similar(riga, tallinn - estonia + latvia)

Guntiss-MacBook-Pro-2:seq2seq guntis\$ python we.py 1.0 1.0 Guntiss-MacBook-Pro-2:seq2seq guntis\$ **Operations on Hypervectors:** An example

. Seed vectors: 10,000 randomly placed 1s and -1s

- . A seed vector can represent a letter of the alphabet, for example
- . Addition (+): Coordinate by coordinate

 $A = +1 -1 -1 +1 -1 -1 -1 \dots +1 +1 -1 +1$ $B = +1 +1 +1 +1 -1 +1 \dots -1 +1 +1 +1$ $C = -1 -1 +1 -1 -1 +1 \dots -1 -1 +1$ $A+B+C = +1 -1 +1 +1 -3 +1 \dots -1 +1 -1 +3$. Similarity between vectors: Cosine

$$cos(A, A) = 1$$

 $cos(A, -A) = -1$

cos(A, B) = 0 if A and B are orthogonal

The **blessing of dimensionality**: A *randomly* chosen hypervector is *approximately orthogonal* (dissimilar) to any vector seen so far

Given two vectors of attributes, A and B, the cosine similarity, $cos(\theta)$, is represented using a dot product and magnitude as

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}, \text{ where } A_i \text{ and } B_i \text{ are components of vector } A \text{ and } B \text{ respectively.}$$

Examples from word2vec, GloVe

vector[Queen] = vector[King] - vector[Man] + vector[Woman]

Building these magical vectors . . .

 How do we actually build these super-intelligent vectors, that seem to have such magical powers?

- ♦ "You shall know a word by the company it keeps"(J. R. Firth 1957: 11)
- Most famous methods to build such lower-dimension vector representations for words based on their context
 - 1. Co-occurrence Matrix with SVD
 - 2. word2vec (Google)
 - 3. Global Vector Representations (GloVe) (Stanford)

Co-occurrence Matrix with Singular Value Decomposition

Building a co-occurrence matrix

Corpus = {"I like deep learning" Context = previous word and next word "I like NLP" "I enjoy flying"}

counts	I -	like	enjoy	deep	learning	NLP	flying	
I	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

SVD: Intuition of Dimensionality reduction

Singular Value Decomposition

Input Vector

The problem with this method, is that we may end up with matrices having billions of rows and columns, which makes SVD computationally restrictive.

word2vec

Architecture

The Research Question

 How to decompose the real-world (*word2vec* from billion word corpora) word-vectors into the orthogonal concept-vectors?

> Concept-vectors: << <1,0,0,0,0,0> - singular <0,1,0,0,0,0> - female <0,0,1,0,0,0> - leader <0,0,0,1,0,0> - human <0,0,0,0,1,0> - monarch <0,0,0,0,0,1> - male

Word-vectors (binary): <1,0,1,1,1,1> = king <1,1,1,1,1,0> = queen <1,0,0,1,0,1> = man <1,1,0,1,0,0> = woman

king – man + woman = queen

♦ If this is possible, then word-embeddings are effectively **discrete**!

This question is part of my ERC Advanced grant submission. For overview of State-of-the-art: http://blog.aylien.com/a-review-of-the-recent-history-of-natural-language-processing/

Using word2vec in your research . . .

https://radimrehurek.com/gensim/models/word2vec.html

Original word2vec C code by Google
 <u>https://code.google.com/archive/p/word2vec/</u>

Word Embedding Visualization <u>http://ronxin.github.io/wevi/</u>