


Concept Mapping to Hypervectors 

• Each concept is represented by a 10,000−D hypervector 
chosen at random (independent components) :   

 N1 =  [−1 +1 −1 −1 −1 +1 −1 −1 ...] 
     N2 =  [+1 −1 +1 +1 +1 −1 +1 −1 ...] 
     N3 =  [−1 −1 −1 +1 +1 −1 +1 −1 ...] 
     N4 =  [−1 −1 −1 +1 +1 −1 +1 −1 ...] 
     ... 
     N64 =   [−1 −1 +1 −1 +1 +1 +1 −1 ...] 

 
• Every hypervector is dissimilar to others, e.g., ⟨N1, N2⟩ = 0 
• This assignment is fixed throughout computation 

Concept 
Mapping 
memory 

‘red’ N1 . 
10,000 



HD Arithmetic 

• Addition (+) is good for representing sets, since sum 
vector is similar to its constituent vectors.  

o ⟨A, B⟩=0    ~0.1 (100D); ~0.05 (1000D); ~0.01 (10000D) 

o ⟨A, A⟩=1 

o ⟨A+B, A⟩=~0.70 

o ⟨A+B+C, A⟩=~0.57 

o ⟨A+B+C+D, A⟩=~0.50 

o ⟨A+B+C+D+E, A⟩=~0.45 

o ... 

 

 
[P. Kanerva, Cognitive Computation’09] 



Concepts  Words 
import numpy as np 
D=10000 
def similar(A,B): # Calculate Cosine similarity (normalized dot-product)  
     return np.sum(A*B)/(np.sqrt(np.sum(A*A))*np.sqrt(np.sum(B*B))) 
 
human   = np.random.randn(D)   
leader   = np.random.randn(D) 
male   = np.random.randn(D) 
monarch   = np.random.randn(D) 
female   = np.random.randn(D) 
single   = np.random.randn(D) 
plural   = np.random.randn(D) 
estland   = np.random.randn(D) 
capital   = np.random.randn(D) 
country   = np.random.randn(D) 
letland   = np.random.randn(D) 
 
king      = human + leader + monarch + male + single 
man       = human + male 
woman     = human + female 
queen     = human + leader + monarch + female + single 
 
print  similar( queen, king - man + woman) 
 
estonia   = estland + country 
tallinn   = estland + capital 
latvia = letland + country 
riga   = letland + capital 
 
print similar( riga, tallinn - estonia + latvia) 

 
 
 
 
 
 
 
 
 
Guntiss-MacBook-Pro-2:seq2seq guntis$ python we.py  
1.0 
1.0 
Guntiss-MacBook-Pro-2:seq2seq guntis$  



 



 



Examples from word2vec, GloVe 

vector[Queen] =  vector[King]  - vector[Man] + vector[Woman]   







Corpus =  {“I like deep learning” 

     “I like NLP” 

     “I enjoy flying”}  

Context =  previous word and next word 





The problem with this method, is that we may end up with matrices having 

billions of rows and columns, which makes SVD computationally restrictive. 







This question is part of  my ERC Advanced grant submission. For overview of  State-of-the-art: 

http://blog.aylien.com/a-review-of-the-recent-history-of-natural-language-processing/ 

Concept-vectors:      << 

<1,0,0,0,0,0> - singular 

<0,1,0,0,0,0> - female 

<0,0,1,0,0,0> - leader 

<0,0,0,1,0,0> - human 

<0,0,0,0,1,0> - monarch 

<0,0,0,0,0,1> - male 

Word-vectors (binary): 

<1,0,1,1,1,1> = king 

<1,1,1,1,1,0> = queen 

<1,0,0,1,0,1> = man 

<1,1,0,1,0,0> = woman 

 

king – man + woman = queen 



https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://code.google.com/archive/p/word2vec/
http://ronxin.github.io/wevi/

