AND COMPUTING:
| Word Embeddings

Guntis Barzdins

Concept Mapping to Hypervectors

* Each concept is represented by a 10,000-D hypervector
chosen at random (independent components) :

;= [-1+1-1-1-1+1-1-1...

+1-1+1+1+1-1+41-1...

-1-1-1+1+1-1+41-1...

-1-1-1+1+1-1+41-1...

===z

N

Ng,= [F1-1+1-1+41+1+41-1..]

* Every hypervector is dissimilar to others, e.g., (N, N,) =0
e This assignment is fixed throughout computation

Concept
‘red” ———{ Mapping ¢> N1

memory | 14 900

HD Arithmetic

* Addition (+) is good for representing sets, since sum
vector is similar to its constituent vectors.

o (A, B)=0

o (A, A)=1

o (A+B, A)="0.70

o (A+B+C, A)="0.57

o (A+B+C+D, A)="0.50

o (A+B+C+D+E, A)="0.45

O eoee

[P. Kanerva, Cognitive Computation’09]

Concepts =2 Words

import numpy as np

D=10000

def similar(A,B): # Calculate Cosine similarity (normalized dot-product)
return np.sum(A*B)/(np.sqrt(np.sum(A*A))*np.sqrt(np.sum(B*B)))

human = np.random.randn(D)
leader = np.random.randn(D)
male = np.random.randn(D)
monarch = np.random.randn(D)
female = np.random.randn(D)
single = np.random.randn(D)
plural = np.random.randn(D)

estland = np.random.randn(D) Guntiss-MacBook-Pro-2:seq2seq guntisS python we.py

capital = np.random.randn(D) 1.0

country = np.random.randn(D) 1.0

letland = np.random.randn(D) Guntiss-MacBook-Pro-2:seq2seq guntisS
king =human + leader + monarch + male + single

man = human + male

woman = human + female
queen = human + leader + monarch + female + single

print similar(queen, king - man + woman)
estonia = estland + country

tallinn = estland + capital

latvia = letland + country

riga = letland + capital

print similar(riga, tallinn - estonia + latvia)

Operations on Hypervectors: An example

. Seed vectors: 10,000 randomly placed 1s and -1s

A= | +1-1-1+1 -1 -1 +1 +1 -1 +1 |

. A seed vector can represent a letter of the
alphabet, for example

. Addition (+): Coordinate by coordinate

A= +1-1-1+1 -1 -1 +1 +1 -1 +1
B= +1+1 +1 +1 -1 +1 -1 +1 +1 +1
cC= -1-1+1-1-1+1.... -1 -1 -1 +1

Similarity between vectors: Cosine

cos(A, A) 1

cos(A,-A) = -1

cos(A, B) O if A and B are orthogonal
The blessing of dimensionality: A randomly
chosen hypervector 1s approximately
orthogonal (dissimilar) to any vector seen
so far

=iven two wectors of attributes, A and B, the cosine similarity, cosfd), s represented using a dof product and magnitude as

A.B ;1 AiB;

similarity = cos(f) = .where A, and B; are camponents of vector 4 and B respectively.

AllllB - n_ n
AT ™ T 5
i=1 i=1

Examples from word2vec, GloVe

walked
)

O

walking

swimming

Male-Female Verb tense

Turkey \\\\‘\\"‘*‘--~_\5
Ankara

Russia e ———
Moscow

Canada Ottawa

Japan ~———
P Tokyo

Vietnam Hanoi

China Beijing

Country-Capital

vector[Queen] = vector[King] - vector[Man] + vector[Woman]

Building these magical vectors . . .

& How do we actually build these super-intelligent
vectors, that seem to have such magical powers?

¢ “You shall know a word by the company it keeps”(J. R. Firth 1957: 11) * |

& Most famous methods to build such lower-dimension
vector representations for words based on their context

1. Co-occurrence Matrix with SVD
2. word2vec (Google)
3. Global Vector Representations (GloVe) (Stanford)

X=UDVT

nxk nxk

Diagonal Orthogonal
matrix matrix

Orthogonal
matrix

Building a co-occurrence matrix

Context = previous word and next word

counts || like |enjoy |deep |learning | NLP |flying

SVD: Intuition of Dimensionality
reduction

PCA dimension 1

PCA dimension 2

Singular Value Decomposition

The problem with this method, is that we may end up with matrices having
billions of rows and columns, which makes SVD computationally restrictive.

word2vec

Google

Architecture

Input Vocabulary

Copus | Buider Lossy Counting

Vocabulary

Sentence Windows Context | Bynamic Window Scaling
Builder Subs.amplmg
Pruning

CBOW Skip-gram

Topur Tgoci Hidden lzyar Oute Jayer

Parameter
Learner
Backpropagation

Hierarchical Softmax
Negative Sampling

The Research Question

® How to decompose the real-world
(word2vec from billion word corpora)
word-vectors into the orthogonal
concept-vectors?

Concept-vectors: << Word-vectors (binary):
<1,0,0,0,0,0> - singular <1,0,1,1,1,1> = king
<0,1,0,0,0,0> - female <1,1,1,1,1,0> = queen
<0,0,1,0,0,0> - leader <1,0,0,1,0,1> = man
<0,0,0,1,0,0> - human <1,1,0,1,0,0> = woman
<0,0,0,0,1,0> - monarch

<0,0,0,0,0,1> - male king — man + woman = queen

& If this 1s possible, then word-embeddings are effectively discrete!

This question is part of my ERC Advanced grant submission. For overview of State-of-the-art:
http:/ /' blog.aylien.com/ a-review-of-the-recent-history-of-natural-language-processing /

Using word2vec 1n your research . . .

& Easiest way to use it is via the Gensim libarary for Python
(tends to be slowish, even though it tries to use C
optimizations like Cython, NumPYy)

https://radimrehurek.com/gensim/models/word2vec.html

¢ Original word2vec C code by Google
https://code.google.com/archive/p/word2vec/

Word Embedding Visualization
http://ronxin.github.i0/wevi/

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://code.google.com/archive/p/word2vec/
http://ronxin.github.io/wevi/

