Equivalence of right-infinite words

Liga Kulesa

University of Latvia

september 30, 2012

Liga Kulesa (University of Latvia)

Equivalence of right-infinite words

september 30, 2012 1 / 20

A⊒ ▶ < ∃

3

- A finite non-empty set (called an *alphabet*),
- A^* free monoid generated by A,
- λ identity element of A^* ,
- By |u| we denote the length of $u \in A^*$.

- 31

- 4 目 ト - 4 日 ト - 4 日 ト

• A morphism is a map $\mu : A^* \longrightarrow B^*$ such that $\forall u, v \in A^*$: $\mu(uv) = \mu(u)\mu(v).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 31

- A morphism is a map $\mu: A^* \longrightarrow B^*$ such that $\forall u, v \in A^*$: $\mu(uv) = \mu(u)\mu(v).$
- If A = B then we can iterate application of μ by defining $\forall a \in A$:

$$\begin{array}{l} \blacktriangleright \ \mu^0(a) = a, \\ \flat \ \forall i \geq 1 \ \mu^i(a) = \mu(\mu^{i-1}(a)) \end{array}$$

- 3

イロト 人間ト イヨト イヨト

- A morphism is a map $\mu: A^* \longrightarrow B^*$ such that $\forall u, v \in A^*$: $\mu(uv) = \mu(u)\mu(v).$
- If A = B then we can iterate application of μ by defining $\forall a \in A$:

$$\begin{array}{l} \blacktriangleright \ \mu^0(a) = a, \\ \flat \ \forall i \geq 1 \ \mu^i(a) = \mu(\mu^{i-1}(a)) \end{array}$$

• If $a \in A$, $|\mu(a)| \ge 2$, then $\lim_{i\to\infty} |\mu^i(a)| = \infty$.

- 31

イロト 人間ト イヨト イヨト

- A morphism is a map $\mu: A^* \longrightarrow B^*$ such that $\forall u, v \in A^*$: $\mu(uv) = \mu(u)\mu(v).$
- If A = B then we can iterate application of μ by defining $\forall a \in A$:

•
$$\mu^0(a) = a$$
,
• $\forall i \ge 1 \ \mu^i(a) = \mu(\mu^{i-1}(a))$.

• If $a \in A$, $|\mu(a)| \ge 2$, then $\lim_{i\to\infty} |\mu^i(a)| = \infty$.

Example. Let $A = \{0, 1\}$. Define the Thue-Morse morphism

$$\mu(0) = 01$$
 and $\mu(1) = 10$.

Then $\mu^2(0) = 0110$ and $\mu^3(0) = 01101001$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Combinatorics on Words (3)

Basic Notions

Finite-state Transducer

•
$$T = \langle Q, A, B; q_0, \circ, * \rangle$$
,

- $\blacktriangleright \ \circ: \ Q \times A \longrightarrow Q,$
- $\blacktriangleright \ \ast : Q \times A \longrightarrow B^{\ast}.$

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finite-state Transducer

- $T = \langle Q, A, B; q_0, \circ, * \rangle$,
 - $\blacktriangleright \ \circ: \ Q \times A \longrightarrow Q,$
 - $\blacktriangleright \ \ast : Q \times A \longrightarrow B^{\ast}.$

• The mappings \circ and * are extended to $Q \times A^*$:

$$\blacktriangleright q \circ \lambda = q, \quad q \circ (ua) = (q \circ u) \circ a.$$

 $\blacktriangleright \ q*\lambda=\lambda, \ q*(ua)=(q*u)\#((q\circ u)*a).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Finite-state Transducer

- $T = \langle Q, A, B; q_0, \circ, * \rangle$,
 - $\blacktriangleright \ \circ: \ Q \times A \longrightarrow Q,$
 - $\blacktriangleright \ \ast : Q \times A \longrightarrow B^{\ast}.$

• The mappings \circ and * are extended to $Q \times A^*$:

•
$$q \circ \lambda = q$$
, $q \circ (ua) = (q \circ u) \circ a$.

$$\blacktriangleright \ q*\lambda=\lambda, \ q*(ua)=(q*u)\#((q\circ u)*a).$$

• k-uniform transducer: $k \ge 1, |q * a| = k$ for all $q \in Q$, $a \in A$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Finite-state Transducer

- $T = \langle Q, A, B; q_0, \circ, * \rangle$,
 - $\blacktriangleright \ \circ: \ Q \times A \longrightarrow Q,$
 - $\blacktriangleright \ \ast : Q \times A \longrightarrow B^{\ast}.$

• The mappings \circ and * are extended to $Q \times A^*$:

•
$$q \circ \lambda = q$$
, $q \circ (ua) = (q \circ u) \circ a$.

$$\blacktriangleright \ q*\lambda=\lambda, \ q*(ua)=(q*u)\#((q\circ u)*a).$$

• k-uniform transducer: $k \ge 1, |q * a| = k$ for all $q \in Q$, $a \in A$,

• Mealy machine: k-uniform transducer, k = 1.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

Mealy machine, morphisms and transducer

- An. A. Muchnik, Yu. L. Pritykin, and A. L. Semenov (2009)
- Let $T = \langle Q, A, B; q_o, \circ, * \rangle$ be a finite transducer and let x be a sequence. Then there exists a Mealy Machine M and morphism φ such that $T(x) = \varphi(M(x))$.

くほと くほと くほと

Mapping

We say that y is a mapping of x if there exists a morphism μ such that

$$y = \mu(x).$$

In this situation we write

$$x \rightarrow_m y$$
.

If we fix

$$\mathfrak{N} = \bigcup_{k=0}^{\infty} \{0, 1, ..., k\}^{\omega}$$

then we have relation \rightharpoondown defined in this set $\mathfrak{N}.$

3

(日) (同) (三) (三)

Transduction

We say that \boldsymbol{y} is a transduction of \boldsymbol{x} if there exists a transducer T such that

$$y = T(x).$$

In this situation we write

$$x \stackrel{T}{\rightharpoondown} y.$$

3

- 4 回 ト - 4 回 ト

Transduction

We say that y is a transduction of x if there exists a transducer T such that

$$y = T(x).$$

In this situation we write

$$x \xrightarrow{T} y$$
.

If we fix

$$\mathfrak{N} = \bigcup_{k=0}^{\infty} \{0, 1, ..., k\}^{\omega}$$

then we have relation \neg defined in this set \mathfrak{N} . Similarly we say that x is transformed by Mealy machine to y if there exist Mealy machine M such that

$$y = M(x).$$

In this situation we write

$$x \xrightarrow{M} y.$$

- A.Cobham (1972)
 - Automatic sequences are closed under 1–uniform transducers.
- F.M.Dekking (1994)
 - ▶ Let $T = \langle Q, A, B; q_o, \circ, * \rangle$ be a finite-state transducer. Let x be a morphic sequence. Then T(x) is morphic or finite.

- 31

- 4 同 6 4 日 6 4 日 6

Complexity of infinite words

• A. Belovs (2008)

- \blacktriangleright The algebraic structure $\langle \mathfrak{N}, \stackrel{M}{\rightharpoondown} \rangle$ is a *preorder*,
- The algebraic structure $\langle \mathfrak{K}, \stackrel{M}{\rightharpoondown} \rangle$ is a *partially ordered set*,
- ► The partially ordered set ℜ is an *upper semi-lattice*,
- ► The partially ordered set ℜ is NOT a *lower semi-lattice*,
- ▶ There exists an *antichain* with a *cardinality* c in ℜ,
- If $x \rightarrow y$ and $y \not\rightarrow x$ then $x \rightarrow y \bigvee \sigma^{-1}x$ but still $y \bigvee \sigma^{-1}x \not\rightarrow x$, were σ stands for the *shift operation*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Algebraic properties

- J.Buls, "Machine Invariant clases", TUCS General publications, 27, (2003), 207-211,
- A. Belovs, "Some Algebraic Properties of Machine Poset of Infinite Words", RAIRO - Theoretical Informatics and Applications, Vol. 42 (2008), 451-466,
- An. A. Muchnik, Yu. L. Pritykin, and A. L. Semenov, "Sequences close to periodic", Uspekhi Mat. Nauk, Vol. 64 (2009), 21 - 96.
- J.Buls, E.Cers, "The semilattice of ω -words", Proceedings of the Olomouc Conference CONTRIBUTIONS TO GENERAL ALGEBRA 19(2010), 13 - 21.

Liga Kulesa (University of Latvia)

Algebraic approach

 $\langle L, L(\geq) \rangle$ is called *partially ordered* set (poset) if,

• $x \ge x$ (reflexivity).

•
$$x \ge y, y \ge z \Rightarrow x \ge z$$
 (transitivity),

• $x > y, y > x \Rightarrow x = y$ (anti-symmetry).

The supremum is the such element $z = x \vee y$ that not only $z \ge x, y$, but for any other element $t \ge x, y$, the expression $t \ge z$ holds.

The *infimum* is such element $z = x \land y$ that not only $z \leq x, y$, but for any other element $t \leq x, y$ holds $t \leq z$.

A poset whose every two elements have a supremum is called an *upper* semi-lattice.

If every two elements have infimum, it is called a *lower semi-lattice*.

Lets consider algebraic structure $\langle \mathfrak{N} / \equiv_m, \neg_m \rangle$, where

- $\mathfrak{N} = \bigcup_{k=0}^{\infty} \{0, 1, 2, ..., k\}^{\omega};$
- $\neg m$ if and only if $\mu(x) = y$;
- $x \equiv_m y$ if and only if $x \neg_m y \land y \neg_m x$.

Semi-Lattice(2)

By \boldsymbol{x} denote a word

$$x_i = \begin{cases} 1, & \text{if } \exists k \; i = k^2 \\ 0, & \text{otherwise} \end{cases}$$

$$x = 11001000010000001...$$

 μ and φ defined $\{0,1\}^* \longrightarrow \{0,1\}^*:$

Morphism μ maps the word x as follows:

 $\mu(x)=d=1111000011000000011...$

Morphism φ maps the word x as follows:

◆□ ▶ ◆冊 ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ の Q @

Semi-Lattice(3)

next we define new word (d, t): $(d, t) = (d_0, t_0)(d_1, t_1)\dots(d_n, t_n)\dots$ (d, t) = (1, 1)(1, 1)(1, 1)(1, 1)(0, 1)(0, 1)(0, 0)(0, 0)(1, 0)(1, 0)(0, 0)(0, 0)...Mappings $\psi: (d_i, t_i) \longrightarrow d_i; \xi: (d_i, t_i) \longrightarrow t_i$ define morphisms $\{(0,0), (0,1), (1,0), (1,1)\}^* \longrightarrow \{0,1\}^*.$

from these definitions we obtain

$$(d,t)\psi = d$$
 and $(d,t)\xi = t$

Semi-Lattice(3)

from these definitions we obtain

 $(d,t)\psi = d$ and $(d,t)\xi = t.$

Liga Kulesa (University of Latvia)

Equivalence of right-infinite words

september 30, 2012

14 / 20

< 67 ▶

Theorem. There does not exist word $d \lor t$, such that diagram

where $\mu_1, \ \mu_2, \ \xi_1, \ \xi_2$ – morphisms, is commutative.

Idea of the proof(1)

Lemma 1. If $(x)\mu_1\mu_2 = d$, then $\mu_1\mu_2 = \mu$. **Lemma 2.** If $(x)\mu_1\xi_2 = t$, then $\mu_1\xi_2 = \varphi$ **Lemma 3.** If $(d, t)\xi_1\xi_2 = t$, then $\xi_1\xi_2 = \xi$ **Lemma 4.** If $(d, t)\xi_1\mu_2 = d$, then $\xi_1\mu_2 = \psi$

< 🗗 🕨

→ ∃ →

3

Idea of the proof(2)

Lets consider morphisms μ_1 and μ_2 , ξ_1 and ξ_2 . Denote:

$$\begin{array}{ll} (0)\mu_1 = v_0 & (0,0)\xi_1 = v_{00} \\ (1)\mu_1 = v_1 & (0,1)\xi_1 = v_{01} \\ & (1,0)\xi_1 = v_{10} \\ & (1,1)\xi_1 = v_{11} \end{array}$$

$$(d,t) = (1,1)(1,1)(1,1)(1,1)(0,1)(0,1)(0,0)...$$

$$(d,t)[0,7]\xi_1 = v = v_{11}v_{11}v_{11}v_{11}v_{01}v_{00}v_{00}$$

Since ψ and ξ map (d,t) letter by letter, then $\xi_1\mu_2$ and $\xi_1\xi_2$ will map the word (d,t) letter by letter from Lemma 4 and Lemma 5.

$$|(v)\mu_2| = 8 = |(v)\xi_2|.$$

Idea of the proof(3)

Denote $x[0,2]\mu_1 = v_1v_1v_0$ Since μ maps x letter by letter, then by lemma 2 $\mu_1\mu_2$ will map the word x letter by letter, thus

 $|(v_1v_1v_0)\mu_2| = 6$

therefore

 $|v_1v_1v_0| < |v|.$

Since φ maps word x letter by letter, then $\mu_1 \xi_2$ will map word x letter by letter from Lemma 3.

 $|(v_1v_1v_0)\xi_2| = 9$

then

$$|v_1v_1v_0| > |v|.$$

Contradiction, the diagram is not commutative.

Hence two elements in such an algebraic structure do not have a supremum, since $x \ge d, t$, but there does not exist $d \lor t$, such that $d \lor t \ge d, t$ and $x \ge d \lor t$.

Also two elements in such an algebraic structure do not have an infimum, since $t \leq x$ and $t \leq (d, t)$, but there does not exist $d \lor t$, such that $d \lor t \leq x$, $d \lor t \leq (d, t)$ and $t \leq d \lor t$.

Thus algebraic structure $\langle \mathfrak{N} / \equiv_m, \neg _m \rangle$ is not a semi–lattice.

19 / 20

Discussion

THANK YOU FOR YOUR ATTENTION!

Liga Kulesa (University of Latvia)

Equivalence of right-infinite words

september 30, 2012

э.

20 / 20