Equivalence of right-infinite words

Liga Kulesa

University of Latvia
september 30, 2012

Combinatorics on Words (1)

Basic Notions

- A - finite non-empty set (called an alphabet),
- A^{*} - free monoid generated by A,
- λ - identity element of A^{*},
- By $|u|$ we denote the length of $u \in A^{*}$.

Combinatorics on Words (2)

Basic Notions

- A morphism is a map $\mu: A^{*} \longrightarrow B^{*}$ such that $\forall u, v \in A^{*}$:

$$
\mu(u v)=\mu(u) \mu(v) .
$$

Combinatorics on Words (2)

Basic Notions

- A morphism is a map $\mu: A^{*} \longrightarrow B^{*}$ such that $\forall u, v \in A^{*}$:

$$
\mu(u v)=\mu(u) \mu(v)
$$

- If $A=B$ then we can iterate application of μ by defining $\forall a \in A$:
- $\mu^{0}(a)=a$,
- $\forall i \geq 1 \mu^{i}(a)=\mu\left(\mu^{i-1}(a)\right)$.

Combinatorics on Words (2)

Basic Notions

- A morphism is a map $\mu: A^{*} \longrightarrow B^{*}$ such that $\forall u, v \in A^{*}$:

$$
\mu(u v)=\mu(u) \mu(v)
$$

- If $A=B$ then we can iterate application of μ by defining $\forall a \in A$:
- $\mu^{0}(a)=a$,
- $\forall i \geq 1 \mu^{i}(a)=\mu\left(\mu^{i-1}(a)\right)$.
- If $a \in A,|\mu(a)| \geq 2$, then $\lim _{i \rightarrow \infty}\left|\mu^{i}(a)\right|=\infty$.

Combinatorics on Words (2)

Basic Notions

- A morphism is a map $\mu: A^{*} \longrightarrow B^{*}$ such that $\forall u, v \in A^{*}$:

$$
\mu(u v)=\mu(u) \mu(v)
$$

- If $A=B$ then we can iterate application of μ by defining $\forall a \in A$:
- $\mu^{0}(a)=a$,
- $\forall i \geq 1 \mu^{i}(a)=\mu\left(\mu^{i-1}(a)\right)$.
- If $a \in A,|\mu(a)| \geq 2$, then $\lim _{i \rightarrow \infty}\left|\mu^{i}(a)\right|=\infty$.

Example. Let $A=\{0,1\}$. Define the Thue-Morse morphism

$$
\mu(0)=01 \text { and } \mu(1)=10 .
$$

Then $\mu^{2}(0)=0110$ and $\mu^{3}(0)=01101001$.

Combinatorics on Words (3)

Basic Notions

Finite-state Transducer

- $T=\left\langle Q, A, B ; q_{0}, \circ, *\right\rangle$,
- $\circ: ~ Q \times A \longrightarrow Q$,
- $*: Q \times A \longrightarrow B^{*}$.

Combinatorics on Words (3)

Basic Notions

Finite-state Transducer

- $T=\left\langle Q, A, B ; q_{0}, \circ, *\right\rangle$,
- $\circ: Q \times A \longrightarrow Q$,
- $*: Q \times A \longrightarrow B^{*}$.
- The mappings \circ and $*$ are extended to $Q \times A^{*}$:
- $q \circ \lambda=q, \quad q \circ(u a)=(q \circ u) \circ a$.
- $q * \lambda=\lambda, \quad q *(u a)=(q * u) \#((q \circ u) * a)$.

Combinatorics on Words (3)

Basic Notions

Finite-state Transducer

- $T=\left\langle Q, A, B ; q_{0}, \circ, *\right\rangle$,
- $\circ: ~ Q \times A \longrightarrow Q$,
- * $: Q \times A \longrightarrow B^{*}$.
- The mappings \circ and $*$ are extended to $Q \times A^{*}$:
- $q \circ \lambda=q, \quad q \circ(u a)=(q \circ u) \circ a$.
- $q * \lambda=\lambda, \quad q *(u a)=(q * u) \#((q \circ u) * a)$.
- k-uniform transducer: $k \geq 1,|q * a|=k$ for all $q \in Q, a \in A$,

Combinatorics on Words (3)

Basic Notions

Finite-state Transducer

- $T=\left\langle Q, A, B ; q_{0}, \circ, *\right\rangle$,
- $\circ: ~ Q \times A \longrightarrow Q$,
- * $: Q \times A \longrightarrow B^{*}$.
- The mappings \circ and $*$ are extended to $Q \times A^{*}$:
- $q \circ \lambda=q, \quad q \circ(u a)=(q \circ u) \circ a$.
- $q * \lambda=\lambda, \quad q *(u a)=(q * u) \#((q \circ u) * a)$.
- k-uniform transducer: $k \geq 1,|q * a|=k$ for all $q \in Q, a \in A$,
- Mealy machine: k-uniform transducer, $k=1$.

Mealy machine, morphisms and transducer

- An. A. Muchnik, Yu. L. Pritykin, and A. L. Semenov (2009)
- Let $T=\left\langle Q, A, B ; q_{o}, \circ, *\right\rangle$ be a finite transducer and let x be a sequence. Then there exists a Mealy Machine M and morphism φ such that $T(x)=\varphi(M(x))$.

Mapping

We say that y is a mapping of x if there exists a morphism μ such that

$$
y=\mu(x)
$$

In this situation we write

$$
x \rightharpoondown_{m} y
$$

If we fix

$$
\mathfrak{N}=\bigcup_{k=0}^{\infty}\{0,1, \ldots, k\}^{\omega}
$$

then we have relation \rightharpoondown defined in this set \mathfrak{N}.

Transduction

We say that y is a transduction of x if there exists a transducer T such that

$$
y=T(x) .
$$

In this situation we write

$$
x \stackrel{T}{\hookrightarrow} y .
$$

Transduction

We say that y is a transduction of x if there exists a transducer T such that

$$
y=T(x)
$$

In this situation we write

$$
x \stackrel{T}{\longrightarrow} y
$$

If we fix

$$
\mathfrak{N}=\bigcup_{k=0}^{\infty}\{0,1, \ldots, k\}^{\omega}
$$

then we have relation \rightharpoondown defined in this set \mathfrak{N}. Similarly we say that x is transformed by Mealy machine to y if there exist Mealy machine M such that

$$
y=M(x)
$$

In this situation we write

$$
x \xrightarrow{M} y .
$$

Closure properties

- A.Cobham (1972)
- Automatic sequences are closed under 1-uniform transducers.
- F.M.Dekking (1994)
- Let $T=\left\langle Q, A, B ; q_{o}, \circ, *\right\rangle$ be a finite-state transducer. Let x be a morphic sequence. Then $T(x)$ is morphic or finite.

Complexity of infinite words

- A. Belovs (2008)
- The algebraic structure $\langle\mathfrak{N}, \stackrel{M}{\sim}\rangle$ is a preorder,
- The algebraic structure $\langle\mathfrak{K}, \xrightarrow{M}\rangle$ is a partially ordered set,
- The partially ordered set \mathfrak{K} is an upper semi-lattice,
- The partially ordered set \mathfrak{K} is NOT a lower semi-lattice,
- There exists an antichain with a cardinality \mathfrak{c} in \mathfrak{K},
- If $x \rightharpoondown y$ and $y \nrightarrow x$ then $x \rightharpoondown y \bigvee \sigma^{-1} x$ but still $y \bigvee \sigma^{-1} x \nsucc x$, were σ stands for the shift operation.

Algebraic properties

- J.Buls, "Machine Invariant clases", TUCS - General publications, 27, (2003), 207-211,
- A. Belovs, "Some Algebraic Properties of Machine Poset of Infinite Words", RAIRO - Theoretical Informatics and Applications, Vol. 42 (2008), 451-466,
- An. A. Muchnik, Yu. L. Pritykin, and A. L. Semenov, "Sequences close to periodic", Uspekhi Mat. Nauk, Vol. 64 (2009), 21 - 96.
- J.Buls, E.Cers, "The semilattice of ω-words", Proceedings of the Olomouc Conference CONTRIBUTIONS TO GENERAL ALGEBRA 19 (2010), 13 - 21.

Algebraic approach

$\langle L, L(\geq)\rangle$ is called partially ordered set (poset) if,

- $x \geq x$ (reflexivity),
- $x \geq y, y \geq z \Rightarrow x \geq z$ (transitivity),
- $x \geq y, y \geq x \Rightarrow x=y$ (anti-symmetry).

The supremum is the such element $z=x \vee y$ that not only $z \geqslant x, y$, but for any other element $t \geqslant x, y$, the expression $t \geqslant z$ holds.

The infimum is such element $z=x \wedge y$ that not only $z \leqslant x, y$, but for any other element $t \leqslant x, y$ holds $t \leqslant z$.
A poset whose every two elements have a supremum is called an upper semi-lattice.

If every two elements have infimum, it is called a lower semi-lattice.

Semi-Lattice(1)

Lets consider algebraic structure $\left\langle\mathfrak{N} / \equiv_{m}, \neg_{m}\right\rangle$, where

- $\mathfrak{N}=\bigcup_{k=0}^{\infty}\{0,1,2, \ldots, k\}^{\omega}$;
- \neg_{m} if and only if $\mu(x)=y$;
- $x \equiv_{m} y$ if and only if $x \neg_{m} y \wedge y \neg_{m} x$.

Semi-Lattice(2)

By x denote a word

$$
\begin{gathered}
x_{i}= \begin{cases}1, & \text { if } \exists k i=k^{2} \\
0, & \text { otherwise }\end{cases} \\
x=11001000010000001 \ldots
\end{gathered}
$$

μ and φ defined $\{0,1\}^{*} \longrightarrow\{0,1\}^{*}$:

$$
\begin{array}{ll}
\mu(1)=11 & \varphi(1)=111 \\
\mu(0)=00 & \varphi(0)=000
\end{array}
$$

Morphism μ maps the word x as follows:

$$
\mu(x)=d=11110000110000000011 \ldots
$$

Morphism φ maps the word x as follows:

$$
\varphi(x)=t=111111000000111000000000000 \ldots
$$

Semi-Lattice(3)

next we define new word (d, t) :
$(d, t)=\left(d_{0}, t_{0}\right)\left(d_{1}, t_{1}\right) \ldots\left(d_{n}, t_{n}\right) \ldots$
$(d, t)=(1,1)(1,1)(1,1)(1,1)(0,1)(0,1)(0,0)(0,0)(1,0)(1,0)(0,0)(0,0) \ldots$
Mappings $\psi:\left(d_{i}, t_{i}\right) \longrightarrow d_{i} ; \xi:\left(d_{i}, t_{i}\right) \longrightarrow t_{i}$ define morphisms

$$
\{(0,0),(0,1),(1,0),(1,1)\}^{*} \longrightarrow\{0,1\}^{*}
$$

from these definitions we obtain

$$
(d, t) \psi=d \quad \text { and } \quad(d, t) \xi=t
$$

Semi-Lattice(3)

next we define new word (d, t) :
$(d, t)=\left(d_{0}, t_{0}\right)\left(d_{1}, t_{1}\right) \ldots\left(d_{n}, t_{n}\right) \ldots$
$(d, t)=(1,1)(1,1)(1,1)(1,1)(0,1)(0,1)(0,0)(0,0)(1,0)(1,0)(0,0)(0,0) \ldots$
Mappings $\psi:\left(d_{i}, t_{i}\right) \longrightarrow d_{i} ; \xi:\left(d_{i}, t_{i}\right) \longrightarrow t_{i}$ define morphisms

$$
\{(0,0),(0,1),(1,0),(1,1)\}^{*} \longrightarrow\{0,1\}^{*}
$$

from these definitions we obtain

$$
(d, t) \psi=d \quad \text { and } \quad(d, t) \xi=t
$$

Semi-Lattice(4)

Theorem. There does not exist word $d \vee t$, such that diagram

where $\mu_{1}, \mu_{2}, \xi_{1}, \xi_{2}$-morphisms, is commutative.

Idea of the proof(1)

Lemma 1. If $(x) \mu_{1} \mu_{2}=d$, then $\mu_{1} \mu_{2}=\mu$.
Lemma 2. If $(x) \mu_{1} \xi_{2}=t$, then $\mu_{1} \xi_{2}=\varphi$
Lemma 3. If $(d, t) \xi_{1} \xi_{2}=t$, then $\xi_{1} \xi_{2}=\xi$
Lemma 4. If $(d, t) \xi_{1} \mu_{2}=d$, then $\xi_{1} \mu_{2}=\psi$

Idea of the proof(2)

Lets consider morphisms μ_{1} and μ_{2}, ξ_{1} and ξ_{2}.
Denote:

$$
\left.\begin{array}{cc}
(0) \mu_{1}=v_{0} & (0,0) \xi_{1}=v_{00} \\
(1) \mu_{1}=v_{1} & (0,1) \xi_{1}=v_{01} \\
(1,0) \xi_{1}=v_{10} \\
(1,1) \xi_{1}=v_{11}
\end{array}\right\} \begin{aligned}
& (d, t)=(1,1)(1,1)(1,1)(1,1)(0,1)(0,1)(0,0) \ldots \\
& (d, t)[0,7] \xi_{1}=v=v_{11} v_{11} v_{11} v_{11} v_{01} v_{01} v_{00} v_{00}
\end{aligned}
$$

Since ψ and ξ map (d, t) letter by letter, then $\xi_{1} \mu_{2}$ and $\xi_{1} \xi_{2}$ will map the word (d, t) letter by letter from Lemma 4 and Lemma 5.

$$
\left|(v) \mu_{2}\right|=8=\left|(v) \xi_{2}\right|
$$

Idea of the proof(3)

Denote $x[0,2] \mu_{1}=v_{1} v_{1} v_{0}$
Since μ maps x letter by letter, then by lemma $2 \mu_{1} \mu_{2}$ will map the word x letter by letter, thus

$$
\left|\left(v_{1} v_{1} v_{0}\right) \mu_{2}\right|=6
$$

therefore

$$
\left|v_{1} v_{1} v_{0}\right|<|v|
$$

Since φ maps word x letter by letter, then $\mu_{1} \xi_{2}$ will map word x letter by letter from Lemma 3.

$$
\left|\left(v_{1} v_{1} v_{0}\right) \xi_{2}\right|=9
$$

then

$$
\left|v_{1} v_{1} v_{0}\right|>|v|
$$

Contradiction, the diagram is not commutative.

Conclusion

Hence two elements in such an algebraic structure do not have a supremum, since $x \geqslant d$, t, but there does not exist $d \vee t$, such that $d \vee t \geqslant d, t$ and $x \geqslant d \vee t$.

Also two elements in such an algebraic structure do not have an infimum, since $t \leqslant x$ and $t \leqslant(d, t)$, but there does not exist $d \vee t$, such that $d \vee t \leqslant x, d \vee t \leqslant(d, t)$ and $t \leqslant d \vee t$.

Thus algebraic structure $\left\langle\mathfrak{N} / \equiv_{m}, \neg_{m}\right\rangle$ is not a semi-lattice.

Discussion

THANK YOU FOR YOUR ATTENTION!

