NEW NON-INTERACTIVE ZEROKNOWLEDGE SUBSET SUM, DECISION KNAPSACKAND RANGE ARGUMENTS

Helger Lipmaa
Bingsheng Zhang

University of Tartu and SUNY Buffalo

Zero-Knowledge

Needed always when participants are malicious

Interactive ZK

Problem: need to interact every time

Non-Interactive ZK

NIZK: Requirements

No NIZK in "standard model"

- Need simulator who can simulate conversation without knowing witness
- Simulator must have some extra power

CRS Model

- Parties have access to honestly generated common reference string
- In simulation, simulator can generate CRS together with trapdoor
- Does not rely on randomgracles
- [Abe Fehr 2007, Gentry Wichs 2011]:
- nonstandard assumptions needed to get either non-interactive perfect zero-knowledge and sublinear communication
- Here: Knowledge assumptions, computational soundness

Size vs. assumption

\{Invited talk, Jens Groth, TCC 2012\}

Our Results: NIZK for Subset Sum

	Lang.	CRS length	Com.	Prover's comp.	Verifier's comp.
Groth 2010	CSAT	$\Theta\left(\|C\|^{2}\right) G$	$\theta(1) G$	$\Theta\left(\|C\|^{2}\right) E$	$\theta(\|C\|) E+\Theta(1) P$
Lipmaa 2012	CSAT	$\theta\left(\|C\|^{1+o(1)}\right) G$	$\Theta(1) G$	$\Theta\left(\|C\|^{2}\right) A$	$\theta(\|C\|) E+\Theta(1) P$
This paper	SS	$\Theta\left(\|S\|^{1+o(1)}\right) G$	$\Theta(1) G$	$\boldsymbol{\Theta}\left(\|S\|^{1+o(1)}\right) M$	$\boldsymbol{\theta}(\|\boldsymbol{S}\|) M+\boldsymbol{\theta}(\mathbf{1}) \boldsymbol{P}$
		One	Many	One	Many

Why NIZK for NPC?

- Efficient NIZK for NPC L => efficient NIZK for all NP languages
- By reduction
- However, reduction "polynomial time" => usually not good enough
- Developed techniques are useful for other problems
- True in our case ©
- [Chaabouni Lipmaa Zhang, FC 2012]: range proof
- [Lipmaa Zhang, SCN 2012] : shuffle
- Current results can be used to speed up CLZ12

Basic Arguments [Gro10, Lip12]

- Hadamard Product argument

- Permutation argument

Quadratic (Groth) CRS or Quasilinear (Lipmaa) CRS Quadratic prover's comp

- Parallel machine model

Simpler Basic Arguments

- Hadamard Product argument

- Shiftargument

- Simpler parallel machine model

Quasilinear CRS Quasilinear comp

Linear CRS
Linear prover's comp

Subset sum (in \mathbb{Z}_{p})

- Common input: set $S=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{Z}_{p}$
- Task: prove you know $\emptyset \neq T \subseteq S$, such that $\sum_{i \in T} i=0$
- ZK proof
- Task is to verify subset sum, not to compute!
- Let \vec{t} be the characteristic vector of T
- $t_{i}=1$ if $s_{i} \in T$

Subset sum: Argument idea

- Let $\vec{b}=\vec{s} \circ \vec{t} / \star b_{i}=s_{i}$ if $s_{i} \in T, b_{i}=0$ otherwise */
- Let \vec{c} be such that $c_{i}=\sum_{j \geq i} b_{j}, \vec{d}$ be shift of $\vec{c}, d_{i}=c_{i+1}$
- Commit to $\vec{t}, \vec{b}, \vec{c}, \vec{d}$
- Prove in ZK that \vec{t} is Boolean $/ * \vec{t} \circ \vec{t}=\vec{t}$ (product argument +
- Prove in ZK that \vec{t} is non-zero /* efficient */
- Prove in ZK that $\vec{s} \circ \vec{t}=\vec{b} /$ product argument *
- Prove in ZK that $c_{i}=\sum_{j \geq i} b_{j}$
- Prove in ZK that \vec{d} is a shift) $\vec{c} /^{*} d_{n}=0, d_{i}=c_{i+1}{ }^{*} /$
- Check that $\vec{c}=\vec{b}+\vec{d} /^{*} c_{n}=b_{n}, c_{i}=b_{i}+c_{i+1}=\sum_{j \geq i} b_{j}, c_{1}=\sum_{j} b_{j}^{* /}$
- Prove in ZK that $c_{1}=0 /{ }^{*}$ easy */

Product Argument

- Given commitments to $\vec{a}, \vec{b}, \vec{c}$, prove in ZK that $\left\{c_{i}=a_{i} b_{i}\right\}$
- Based on [Lipmaa 2012]
- Uses a progression-free set $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right), \lambda_{n}=o\left(n 2^{2 \sqrt{2 \log _{2} n}}\right)$
- Most expensive part in computation:
- $\prod_{i=1}^{n} \Pi_{j \neq i} g^{\left(a_{i} b_{j}-c_{i}\right) x^{\lambda_{i}+\lambda_{j}}}$, given $\left\{g^{x^{k}}: k \in\left\{\lambda_{i}+\lambda_{j}: i \neq j\right\}\right\}$
- [Lipmaa 2012]: can do ir ${ }^{2}$)additions and $o\left(n 2^{2 \sqrt{2 \log _{2} n}}\right)$.
- [This paper]:

Does not work with permutation argument

- Use Fast Fourier Transform to compute all exponents in $o\left(n 2^{2 \sqrt{2 \log _{2} n}} \log n\right) \ll n^{2}$ multiplications in \mathbb{Z}_{p}
- Use Pippenger's algorithm to compute multi-exponentiation by doing $o\left(n 2^{2 \sqrt{2 \log _{2} n}}\right)$ multiplications in elliptic curve group

Shift Argument: Preliminaries

- Let
- e be bilinear map, $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$
- $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a progression-free set, $\Lambda \subset\{1, \ldots, N\}$ for $N \ll n^{2}$
- $v>\lambda_{n}$ be a large integer
- σ be a secret key In previous papers, $v=0$
- $g^{\sigma^{v}},\left\{g^{\sigma^{\lambda_{i}}}\right\}$ are given in CRS
- $\operatorname{Com}(\vec{a} ; r):=\left(g^{\sigma^{v}}\right)^{r} \cdot \prod_{i=1}^{n}\left(g^{\sigma^{\lambda_{i}}}\right)^{a_{i}}$
- Note that $\log _{g} \operatorname{Com}(\vec{a} ; r)=r \sigma^{v}+\sum_{i=1}^{n} a_{i} \sigma^{\lambda_{i}}$

Shift Argument: Brief Idea

- Let $A=\operatorname{Com}\left(\vec{a} ; r_{a}\right)$ and $B=\operatorname{Com}\left(\vec{b} ; r_{b}\right)$
- Consider "verification equation" $e\left(A, g^{\sigma}\right) / e(B, g)=e(g, \pi)$
- After taking discrete logarithm of left side we get
- $\left(r_{a} \sigma^{v}+\sum_{i=1}^{n} a_{i} \sigma^{\lambda_{i}}\right) \sigma-\left(r_{b} \sigma^{v}+\sum_{i=1}^{n} b_{i} \sigma^{\lambda_{i}}\right)=$
- $\frac{r^{n}\left(a_{i-1} \alpha_{i-1+1}+a_{n}+1\right.}{}+F_{\pi}(\sigma)$

0, if the prover is honest $\quad \begin{aligned} & F_{\pi}(X)=\sum_{\phi \in \Phi} f_{\phi} \phi(X) \\ & \\ & X^{\lambda_{i-1}+1}, X^{\lambda_{n}+1} \notin \operatorname{span} \Phi\end{aligned}$

- Prover proves he an represent $\log \pi$ as $F_{\pi}(\sigma)$ (for some coefficients f_{ϕ})

Conclusions

- NIZK proof for NP-complete language subset sum
- Based on two basic arguments, product and shift
- "NIZK programming language"
- Slightly modified commitment scheme
- Product argument:
- [Lipmaa 2012]: quadratic prover's computation
- This paper: quasilinear complexity by using FFT, Pippenger's multiexponentiation algorithm
- Shift argument:
- Completely new, linear complexity
- Replaces permutation argument (quadratic prover's comp.)

Conclusions

- More efficient range argument:
- [Chaabouni Lipmaa Zhang 2012]: replace permutation with shift
- Decision knapsack argument:
- Combine subset sum argument with range argument
- [Lipmaa 2012] had Circuit-SAT argument with quadratic complexity --- we showed one can do other NPC languages with less work
- Question: how efficient direct NIZK one can build for different NPC languages?
- In a concrete parallel machine model
- ... what are other nice basic arguments?

