

IEGULDĪJUMS TAVĀ NĀKOTNĒ

What is the smallest possible quantum query complexity of a Boolean function?

> Andris Ambainis University of Latvia

European Social Fund project "Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku" Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

What is quantum computation? New model of computing based on quantum mechanics. More powerful than conventional models: Factoring: given N=pq, find p and q; Discrete logarithms; Search: given N objects x_i, find an object $i:x_i=1.$

Quantum computation: the model

Probabilistic computation

(1) 0.6
0.1
(2) 3^{0.2}

4

01

Probabilistic system with finite state space.
Current state: probabilities p_i to be in state i.

Probabilistic computation

Pick the next state, depending on the current one.
Transitions: r_{ij} probabilities to move from i to j.

Probabilistic computation Probability vector (p₁, ..., p_N). Transitions:

transition probabilities

before the transition

after the transition

Quantum computation

Current state: amplitudes α_i to be in state i. $\sum_i |\alpha_i|^2 = 1$

4 0.3

For most purposes, real (possibly negative) amplitudes suffice.

 $|\Psi\rangle$ =0.7 $|1\rangle$ -0.7 $|2\rangle$ +0.1 $|3\rangle$ -0.1 $|4\rangle$.

Quantum computationAmplitude vector ($\alpha_1, ..., \alpha_M$), $\sum_i |\alpha_i|^2 = 1$ Transitions:

 $\begin{pmatrix} u_{11} & \dots & u_{1M} \\ \dots & \dots & \dots \\ u_{M1} & \dots & u_{MM} \end{pmatrix}$ $\langle u_{M1}$

transition matrix

after the transition

before the transition

Measurement

Quantum algorithms in the query model

Query model

Function f(x₁, ..., x_N), x_i∈{0,1}.
x_i given by a black box:

What is the smallest number of queries with which one can compute $f(x_1, ..., x_N)$?

Decision trees

1

 X_1

0

X₂

0

X₃

 $\mathbf{0}$

Grover's search

Does there exist i:x_i=1?
Queries: ask i, get x_i.
Classically, N queries required.
Quantum: O(√N) queries [Grover, 1996].

Triangle finding Graph G with n vertices. n^2 variables x_{ij} ; $x_{ij}=1$ if there is an edge (i, j). Does G contain a triangle? Classically: O(n²). [Lee, et al., 2013] Quantum: $O(n^{9/7})$.

Queries in the quantum world Basis states: $|1,1\rangle$, $|1,2\rangle$, ..., $|N,M\rangle$. State: $\alpha_{1,1}|1,1\rangle + \alpha_{1,2}|1,2\rangle + \dots + \alpha_{N,M}|N,M\rangle.$ Query: $|i, j\rangle \rightarrow |i, j\rangle$, if x_i=0; $|i, j\rangle \rightarrow -|i, j\rangle$, if x_i=1;

Example $x_1 x_2 x_3$ 0 1 0

 $\alpha_{1,1}|1,1\rangle + \alpha_{1,2}|1,2\rangle + \alpha_{2,1}|2,1\rangle + \alpha_{3,1}|3,1\rangle$ Query $\alpha_{1,1}|1,1\rangle + \alpha_{1,2}|1,2\rangle - \alpha_{2,1}|2,1\rangle + \alpha_{3,1}|3,1\rangle$

Quantum query model

Fixed starting state.
 U₀, U₁, ..., U_T – independent of x₁, ..., x_N.
 Q – queries.
 Measuring final state gives the result.

Quantum query complexity

Q_E(f) – for any x₁, ..., x_N, measuring the final state of the algorithm always gives f(x₁, ..., x_N).

 $Q_2(f)$ – for any $x_1, ..., x_N$, measuring the final state of the algorithm gives $f(x_1, ..., x_N)$ with probability $\ge 2/3$.

What is the smallest possible $Q_2(f)$ for $f(x_1, ..., x_N)$ that depends on all x_i ?

Quantum algorithms?

• A quantum algorithm can query $\alpha_{1,1}|1,1\rangle+\alpha_{1,2}|1,2\rangle+...+\alpha_{N,M}|N,M\rangle$ in one step.

It is not obvious that there is no $f(x_1, ..., x_N)$ that depends on all x_i and is computable with 2 or 3 queries.

Main result

<u>Theorem</u> (A, de Wolf, 2012):
There exists f(x₁, ..., x_N) that depends on all x_i and is computable with O(log N/log log N) queries.
Any f(x₁, ..., x_N) that depends on all x_i requires

 $\Omega(\log N/\log \log N)$ queries.

Part 1: construction

Addressing schemes

Addressing scheme: algorithm that makes k queries to $x_1, ..., x_N$ and outputs $g(x_1, ..., x_N) \in \{1, ..., M\}.$

 $f(x_1, ..., x_N, y_1, ..., y_M) = y_{g(x_1, ..., x_N)}$

N+M variables, k+1 queries How big can we make M?

Addressing schemes

Classical: k queries => M = 2^k locations.
 Quantum: k queries => M = k^{ck} locations.

Function $f(x_1, ..., x_N, y_1, ..., y_M)$ that depends on $M = k^{ck}$ variables, is computable with k+1 queries. k+1 = O(log M/log log M)

Part 2: lower bound

Analyzing query algorithms

 $\alpha_{1,1}|1,1\rangle + \alpha_{1,2}|1,2\rangle + ... + \alpha_{N,M}|N,M\rangle$

 $\alpha_{1,1}$ is actually $\alpha_{1,1}(x_1, ..., x_N)$

Polynomials method

• Lemma [Beals et al., 1998] If $\sum_{i,j} \alpha_{i,j} (x_1, ..., x_N) | i, j \rangle$ is a state after k queries, then $\alpha_{i,j}(x_1, ..., x_N)$ are polynomials in $x_1, ..., x_N$ of degree $\leq k$.

Measurement: (i, j) w. probability $\alpha_{i,j}(x_1,...,x_N)^2$

Polynomial of degree $\leq 2k$

Implications

• Corollary 1 If f is computable with k quantum queries exactly (no error), there exists p: deg(p) \leq 2k: f=0 \rightarrow p=0, f=1 \rightarrow p=1.

Corollary 2 If f is computable with k quantum queries with prob. ≥2/3, there exists p: deg(p)≤2k: $f=0 \rightarrow p \in [0, 1/3], f=1 \rightarrow p \in [2/3, 1].$

Results

If $f(x_1, ..., x_N)$ depends on all x_i , then [Nisan, Szegedy, 1994] $deg(p) = \Omega$ (log N) for a polynomial p: $f=0 \rightarrow p=0, f=1 \rightarrow p=1.$ [A, de Wolf, 2012] $deg(p) = \Omega (\log N/\log \log N)$ for any p: $f=0 \rightarrow p \in [0, 1/3], f=1 \rightarrow p \in [2/3, 1].$

Influences

x=(x₁, ..., x_N).
 xⁱ=(x₁, ..., 1-x_i, ..., x_N).
 Influence of a variable:

 Inf_i(f) = Pr_x[f(x) ≠ f(xⁱ)]

Using influences

Fourier representation of Boolean functions

 $S = \{i_1, ..., i_k\}$

 $\chi_{S}(x_{1},...,x_{N}) = \begin{cases} 1 & x_{i_{1}} + ... + x_{i_{k}} even \\ -1 & x_{i_{1}} + ... + x_{i_{k}} odd \end{cases}$

 $\chi_{S}(x_{1},...,x_{N}) = (-1)^{x_{i_{1}}+...+x_{i_{k}}}$

<u>Theorem</u> For any $f(x_1, ..., x_N)$,

 $f(x_1,...,x_N) = \sum_{S} \alpha_S \chi_S(x_1,...,x_N)$

Properties of Fourier coefficients $f(x_1,...,x_N) = \sum_{S} \alpha_S \chi_S(x_1,...,x_N)$ 1) deg(f) = d $\Rightarrow \alpha_{s}=0$ for S:|S|>d 2) $\sum_{S} \alpha_{S}^{2} \le 1$ 3) $\sum_{S} \alpha_{S}^{2} = Inf_{i}(S)$ $i \in S$ $\sum_{i} Inf_{i}(S) = \sum_{i} \sum_{i \in S} \alpha_{S}^{2} = \sum_{S} |S| \alpha_{S}^{2} \le d$

Conclusion

The smallest number of quantum queries to compute f(x₁, ..., x_N) that depends on all x_i is Θ(log N/log log N).
 Uses connection between quantum algorithms and polynomials.