
What is the smallest possible
quantum query complexity of a

Boolean function?

Andris Ambainis

University of Latvia

European Social Fund project “Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku” Nr.2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044

What is quantum computation?

� New model of computing based on
quantum mechanics.

� More powerful than conventional models:

� Factoring: given N=pq, find p and q;

� Discrete logarithms;

� Search: given N objects xi, find an object
i:xi=1.

Quantum computation: the
model

Probabilistic computation

�Probabilistic system
with finite state
space.

�Current state:
probabilities pi to be
in state i.

1

2 3

4

0.6

0.1
0.2

0.1

∑ =
i

ip 1

Probabilistic computation

�Pick the next state,
depending on the
current one.

�Transitions: rij -
probabilities to move
from i to j.

1

2 3

4

2/3

1/3

� Probability vector (p1, …, pN).

�Transitions:

before the transition

















NNN

N

rr

rr

...

.........

...

1

111

transition probabilities

=
















Np

p

'

...

'1

after the transition

















Np

p

...

1

Probabilistic computation

�Current state:
amplitudes αi to be in
state i.

1

2 3

4

0.4+0.3i

-0.7 0.4-0.1i

0.3

∑ =
i

i 1
2

α

For most purposes, real

(possibly negative)

amplitudes suffice.

Quantum computation

�Basis states |1〉, |2〉,
|3〉, |4〉.

|1〉 |2〉

|3〉

0.7 -0.7

0.1

|Ψ〉=0.7 |1〉-0.7 |2〉+0.1|3〉 -0.1 |4〉.



















−

−
=Ψ

1.0

1.0

7.0

7.0

|4〉

-0.1

Notation

Quantum computation
� Amplitude vector (α1, …, αM), .

� Transitions:

before the transition

















MMM

M

uu

uu

...

.........

...

1

111

transition matrix

=
















M'

...

'1

α

α

after the transition

















Mα

α

...

1

Quantum state:

α1 |1〉 + α2 |2〉 + 7 + αN |N〉

|α1|
2

1

prob. |α2|
2

2
|αN|2

N7

Measurement

Measurement

Quantum algorithms in the
query model

Query model

� Function f(x1, ..., xN), xi∈{0,1}.

� xi given by a black box:

i xi

What is the smallest number of queries
with which one can compute f(x1, ..., xN)?

Decision trees

x1
0 1

1
x2

0 1

1
x3

0 1

10

Grover's search

� Does there exist i:xi=1?

� Queries: ask i, get xi.

� Classically, N queries required.

� Quantum: O(√N) queries [Grover,
1996].

0 1 0 0...

x1 x2 xNx3

Triangle finding

� Graph G with n vertices.

� n2 variables xij; xij=1 if
there is an edge (i, j).

� Does G contain a
triangle?

� Classically: O(n2).

� [Lee, et al., 2013]
Quantum: O(n9/7).

Queries in the quantum world

� Basis states: |1,1〉, |1, 2〉, …, |N, M〉.

� State:

α1,1|1,1〉+ α1,2|1, 2〉+ … + αN, M|N, M〉.

� Query:

� |i, j〉 → |i, j〉, if xi=0;

� |i, j〉 → -|i, j〉, if xi=1;

Example

α1,1|1, 1〉+α1,2|1, 2〉+α2,1|2, 1〉+α3,1|3,1〉

0 1 0

x1 x2 x3

Query

α1,1|1, 1〉+α1,2|1, 2〉- α2,1|2, 1〉+α3,1|3,1〉

Quantum query model

� Fixed starting state.

� U0, U1, …, UT – independent of x1, …, xN.

� Q – queries.

� Measuring final state gives the result.

U0 Q QU1 UT…

Quantum query complexity

� QE(f) – for any x1, ..., xN, measuring the
final state of the algorithm always gives
f(x1, ..., xN).

� Q2(f) – for any x1, ..., xN, measuring the
final state of the algorithm gives f(x1, ...,
xN) with probability ≥2/3.

What is the smallest possible
Q2(f) for f(x1, ..., xN) that

depends on all xi?

0 1

Deterministic algorithms

x1

x2

x4

0

0

0

1

1

1

x5

0 1

x3

x6

0

0

1

1

x7

K levels

2K-1 variables N = 2K-1 ⇒ K ≈ log N

Quantum algorithms?

� A quantum algorithm can query
α1,1|1,1〉+α1,2|1, 2〉+ … +αN, M|N, M〉

in one step.

It is not obvious that there is no
f(x1, ..., xN) that depends on all xi and is
computable with 2 or 3 queries.

Main result

� Theorem (A, de Wolf, 2012):

� There exists f(x1, ..., xN) that depends on all xi

and is computable with O(log N/log log N)
queries.

� Any f(x1, ..., xN) that depends on all xi requires
Ω(log N/log log N) queries.

Part 1: construction

0 1

Deterministic algorithms

x1

x2

x4

0

0

0

1

1

1

x5

0 1

x3

x6

0

0

1

1

x7

address

bit that is being addressed

Addressing schemes

� Addressing scheme: algorithm that makes
k queries to x1, ..., xN and outputs
g(x1, .. xN) ∈ {1, ..., M}.

N+M variables, k+1 queries

How big can we make M?

Addressing schemes

� Classical: k queries => M = 2k locations.

� Quantum: k queries => M = kck locations.

Function f(x1, ..., xN, y1, ..., yM)
that depends on M=kck variables,
is computable with k+1 queries.

k+1 = O(log M/log log M)

Part 2: lower bound

Analyzing query algorithms

Q QQ UT…U1

α1,1|1,1〉+ α1,2|1, 2〉+ … + αN, M|N, M〉

α1,1 is actually α1,1(x1, ..., xN)

Polynomials method

� Lemma [Beals et al., 1998] If

is a state after k queries, then αi,j(x1, ..., xN)
are polynomials in x1, ..., xN of degree ≤ k.

Measurement: (i, j) w. probability

Polynomial of degree ≤ 2k

Implications

� Corollary 1 If f is computable with k
quantum queries exactly (no error), there
exists p: deg(p)≤2k:

f=0 → p=0, f=1 → p=1.

� Corollary 2 If f is computable with k
quantum queries with prob. ≥2/3, there
exists p: deg(p)≤2k:

f=0 → p∈[0, 1/3], f=1 → p∈[2/3, 1].

Results

If f(x1, ..., xN) depends on all xi, then

� [Nisan, Szegedy, 1994]

deg(p) = Ω (log N) for a polynomial p:

f=0 → p=0, f=1 → p=1.

� [A, de Wolf, 2012]

deg(p) = Ω (log N/log log N) for any p:

f=0 → p∈[0, 1/3], f=1 → p∈[2/3, 1].

Influences

� x=(x1, ..., xN).

� xi=(x1, ..., 1-xi, ..., xN).

� Influence of a variable:

� Infi(f) = Prx[f(x) ≠ f(xi)]

Using influences

� f(x1, x2, ..., xN) = polynomial of degree d.

� Lemma 1 If f(x) depends on xi, then

� Lemma 2 For any f(x),
di fInf
2

1
)(≥

dfInf
i

i ≤∑)(≤
d

N

2

N ≤ d 2d d ≥ log N – log log N

Fourier representation of Boolean
functions

S={i1, ..., ik}

Theorem For any f(x1, ..., xN),

Properties of Fourier coefficients

1) deg(f) = d ⇒ αS=0 for S:|S|>d

2) 3)

Conclusion

� The smallest number of quantum queries
to compute f(x1, ..., xN) that depends on
all xi is Θ(log N/log log N).

� Uses connection between quantum
algorithms and polynomials.

