What is the smallest possible quantum query complexity of a Boolean function?

Andris Ambainis
 University of Latvia

What is quantum computation?

New model of computing based on quantum mechanics.

- More powerful than conventional models:
- Factoring: given $N=p q$, find p and q;
- Discrete logarithms;
- Search: given N objects x_{i} find an object $i: x_{i}=1$.

Quantum computation: the model

Probabilistic computation

Probabilistic system with finite state
space.
Current state: probabilities p_{i} to be in state i .

$$
\sum_{i} p_{i}=1
$$

Probabilistic computation

Pick the next state, depending on the current one.
Transitions: r_{ij} probabilities to move from i to j .

Probabilistic computation

Probability vector $\left(p_{1}, \ldots, p_{N}\right)$.

- Transitions:

$$
\begin{aligned}
& \left(\begin{array}{c}
p_{1}^{\prime} \\
\cdots \\
p_{N}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
r_{11} & \cdots & r_{1 N} \\
\cdots & \cdots & \cdots \\
r_{N 1} & \cdots & r_{N N}
\end{array}\right)\left(\begin{array}{c}
p_{1} \\
\cdots \\
p_{N}
\end{array}\right) \\
& \\
& \text { transition probabilities } \\
& \text { before the transition }
\end{aligned}
$$

Quantum computation

(1) $0.4+0.3 i$

Current state:
amplitudes α_{i} to be in state i.

$$
\sum_{i}\left|\alpha_{i}\right|^{2}=1
$$

(4) 0.3

For most purposes, real
(possibly negative)
amplitudes suffice.

Notation

0.1

0.7

Basis states $|1\rangle,|2\rangle$, $|3\rangle,|4\rangle$.

$$
|\Psi\rangle=\left(\begin{array}{c}
0.7 \\
-0.7 \\
0.1 \\
-0.1
\end{array}\right)
$$

$$
|\Psi\rangle=0.7|1\rangle-0.7|2\rangle+0.1|3\rangle-0.1|4\rangle .
$$

Quantum computation

Amplitude vector $\left(\alpha_{1}, \ldots, \alpha_{M}\right), \quad \sum_{i}\left|\alpha_{i}\right|^{2}=1$ Transitions:

$$
\left(\begin{array}{c}
\alpha_{1}^{\prime} \\
\ldots \\
\alpha_{M}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
u_{11} & \ldots & u_{1 M} \\
\ldots & \ldots & \ldots \\
u_{M 1} & \ldots & u_{M M}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\ldots \\
\alpha_{M}
\end{array}\right)
$$

Measurement

Quantum state:

$$
\alpha_{1}|1\rangle+\alpha_{2}|2\rangle+\ldots+\alpha_{N}|N\rangle
$$

Measurement
prob. $\left|\alpha_{1}\right|^{2} \quad\left|\alpha_{2}\right|^{2} \quad\left|\alpha_{N}\right|^{2}$

Quantum algorithms in the query model

Query model

Function $f\left(x_{1}, \ldots, x_{N}\right), x_{i} \in\{0,1\}$.
$-x_{i}$ given by a black box:

What is the smallest number of queries with which one can compute $f\left(x_{1}, \ldots, x_{N}\right)$?

Decision trees

Grover's search

$$
\begin{array}{c|c|c|c|c}
\hline 0 & 1 & 0 & \cdots & 0 \\
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & & \mathrm{x}_{\mathrm{N}}
\end{array}
$$

Does there exist $i: x_{i}=1$?
Queries: ask i, get x_{i}.
Classically, N queries required.
Quantum: O($\sqrt{ } \mathrm{N}$) queries [Grover, 1996].

Triangle finding

- Graph G with n vertices.
n^{2} variables $x_{i j} ; x_{i j}=1$ if there is an edge (i, j).
- Does G contain a triangle?
Classically: O(n^{2}).
[Lee, et al., 2013]
Quantum: O(n9/7).

Queries in the quantum world

Basis states: $|1,1\rangle,|1,2\rangle, \ldots,|N, M\rangle$.

- State:

$$
\alpha_{1,1}|1,1\rangle+\alpha_{1,2}|1,2\rangle+\ldots+\alpha_{N, M}|N, M\rangle .
$$

Query:
$-|i, j\rangle \rightarrow|i, j\rangle$, if $x=0$;
$-|i, j\rangle \rightarrow-\mid i, j$, if $x_{i}=1$;

Example

$$
\begin{array}{l|l|l}
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\
\hline 0 & 1 & 0 \\
\hline
\end{array}
$$

$$
\begin{gathered}
\alpha_{1,1}|1,1\rangle+\alpha_{1,2}|1,2\rangle+\alpha_{2,1}|2,1\rangle+\alpha_{3,1}|3,1\rangle \\
\square \quad \text { Query }
\end{gathered}
$$

$$
\alpha_{1,1}|1,1\rangle+\alpha_{1,2}|1,2\rangle-\alpha_{2,1}|2,1\rangle+\alpha_{3,1}|3,1\rangle
$$

Quantum query model

Fixed starting state.

- $\mathrm{U}_{0}, \mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{T}}$ - independent of $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}$.

Q - queries.

- Measuring final state gives the result.

Quantum query complexity

$Q_{E}(f)$ - for any x_{1}, \ldots, x_{N}, measuring the final state of the algorithm always gives $f\left(x_{1}, \ldots, x_{N}\right)$.
$Q_{2}(f)$ - for any x_{1}, \ldots, x_{N}, measuring the final state of the algorithm gives $f\left(x_{1}, \ldots\right.$, $\left.x_{N}\right)$ with probability $\geq 2 / 3$.

What is the smallest possible $\mathrm{Q}_{2}(\mathrm{f})$ for $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right)$ that depends on all x_{i} ?

Deterministic algorithms

K levels

2^{K} - 1 variables
$N=2^{K}-1 \Rightarrow K \approx \log N$

Quantum algorithms?

A quantum algorithm can query $\alpha_{1,1}|1,1\rangle+\alpha_{1,2}|1,2\rangle+\ldots+\alpha_{N, M}|N, M\rangle$ in one step.

It is not obvious that there is no $f\left(x_{1}, \ldots, x_{N}\right)$ that depends on all x_{i} and is computable with 2 or 3 queries.

Main result

Theorem (A, de Wolf, 2012):

- There exists $f\left(x_{1}, \ldots, x_{N}\right)$ that depends on all x_{i} and is computable with $O(\log N / \log \log N)$ queries.
- Any $f\left(x_{1}, \ldots, x_{N}\right)$ that depends on all x_{i} requires $\Omega(\log N / \log \log N)$ queries.

Part 1: construction

Deterministic algorithms

bit that is being addressed

Addressing schemes

Addressing scheme: algorithm that makes k queries to $x_{1,}, \ldots, x_{N}$ and outputs $g\left(x_{1}, . . x_{N}\right) \in\{1, \ldots, M\}$.
\square

$$
f\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{M}\right)=y_{g\left(x_{1}, \ldots, x_{N}\right)}
$$

$N+M$ variables, $k+1$ queries How big can we make M?

Addressing schemes

Classical: k queries $=>M=2^{k}$ locations.
Quantum: k queries $=>M=k c k$ locations.
Function $f\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{M}\right)$ that depends on $M=k^{c k}$ variables, is computable with $k+1$ queries.

$$
\mathrm{k}+1=\mathrm{O}(\log \mathrm{M} / \log \log \mathrm{M})
$$

Part 2: lower bound

Analyzing query algorithms

$$
\alpha_{1,1}|1,1\rangle+\alpha_{1,2}|1,2\rangle+\ldots+\alpha_{N, M}|N, M\rangle
$$

$\alpha_{1,1}$ is actually $\alpha_{1,1}\left(x_{1}, \ldots, x_{N}\right)$

Polynomials method

Lemma [Beals et al., 1998] If

$$
\left.\sum_{i, j} \alpha_{i, j}\left(x_{1}, \ldots, x_{N}\right) i, j\right\rangle
$$

is a state after k queries, then $\alpha_{i, j}\left(x_{1}, \ldots, x_{N}\right)$ are polynomials in x_{1}, \ldots, x_{N} of degree $\leq k$.
Measurement: (i, j) w. probability $\left|\alpha_{i, j}\left(x_{1}, \ldots, x_{N}\right)\right|^{2}$ Polynomial of degree $\leq 2 k$

Implications

Corollary 1 If f is computable with k quantum queries exactly (no error), there exists p : $\operatorname{deg}(\mathrm{p}) \leq 2 \mathrm{k}$:

$$
f=0 \rightarrow p=0, \quad f=1 \rightarrow p=1 .
$$

Corollary 2 If f is computable with k quantum queries with prob. $\geq 2 / 3$, there exists p : $\operatorname{deg}(p) \leq 2 k$:

$$
\mathrm{f}=0 \rightarrow \mathrm{p} \in[0,1 / 3], \mathrm{f}=1 \rightarrow \mathrm{p} \in[2 / 3,1] .
$$

Results

If $f\left(x_{1}, \ldots, x_{N}\right)$ depends on all x_{i}, then
[[Nisan, Szegedy, 1994] $\operatorname{deg}(p)=\Omega(\log N)$ for a polynomial p :

$$
f=0 \rightarrow p=0, \quad f=1 \rightarrow p=1 .
$$

- [A, de Wolf, 2012] $\operatorname{deg}(p)=\Omega(\log N / \log \log N)$ for any p : $f=0 \rightarrow p \in[0,1 / 3], f=1 \rightarrow p \in[2 / 3,1]$.

Influences

$x=\left(x_{1}, \ldots, x_{N}\right)$.
$x^{i}=\left(x_{1}, \ldots, 1-x_{i}, \ldots, x_{N}\right)$.

- Influence of a variable:
- $\operatorname{Inf}_{\mathrm{i}}(\mathrm{f})=\operatorname{Pr}_{\mathrm{x}}\left[\mathrm{f}(\mathrm{x}) \neq \mathrm{f}\left(\mathrm{x}^{\mathrm{i}}\right)\right]$

Using influences

$f\left(x_{1}, x_{2}, \ldots, x_{N}\right)=$ polynomial of degree d. Lemma 2 For any $f(x)$,

$$
\frac{N}{2^{d}} \leq \sum_{i} \operatorname{Inf}_{i}(f) \leq d
$$

$$
N \leq d 2^{d} \quad d \geq \log N-\log \log N
$$

Fourier representation of Boolean functions

$$
\begin{gathered}
\mathrm{S}=\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right\} \\
\chi_{S}\left(x_{1}, \ldots, x_{N}\right)=\left\{\begin{array}{cc}
1 & x_{h}+\ldots+x_{i} \text { even } \\
-1 & x_{h}+\ldots+x_{k} \text { odd }
\end{array}\right. \\
\chi_{S}\left(x_{1}, \ldots, x_{N}\right)=(-1)^{x_{1}+\ldots+x_{k}}
\end{gathered}
$$

Theorem For any $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)$,

$$
f\left(x_{1}, \ldots, x_{N}\right)=\sum_{S} \alpha_{S} \chi_{S}\left(x_{1}, \ldots, x_{N}\right)
$$

Properties of Fourier coefficients

$$
f\left(x_{1}, \ldots, x_{N}\right)=\sum_{S} \alpha_{S} x_{S}\left(x_{1}, \ldots, x_{N}\right)
$$

$$
\begin{array}{ll}
\text { 1) } \operatorname{deg}(\mathrm{f})=\mathrm{d} & \Rightarrow \alpha_{S}=0 \text { for } \mathrm{S}:|\mathrm{S}|>\mathrm{d} \\
\text { 2) } \sum_{S} \alpha_{S}^{2} \leq 1 & \text { 3) } \sum_{i \in S} \alpha_{S}^{2}=\operatorname{Inf}_{i}(S)
\end{array}
$$

$$
\sum_{i} \operatorname{Inf}_{i}(S)=\sum_{i} \sum_{i \in S} \alpha_{S}^{2}=\sum_{S}|S| \alpha_{S}^{2} \leq d
$$

Conclusion

The smallest number of quantum queries to compute $f\left(x_{1}, \ldots, x_{N}\right)$ that depends on all x_{i} is $\Theta(\log N / \log \log N)$.

- Uses connection between quantum algorithms and polynomials.

