SOME ALGEBRAIC STRUCTURES RELATED TO ND-AUTOMATA

Jānis Cirulis
University of Latvia
email: jc@lanet.lv
Joint Estonian-Latvian Theory Days
Medzābaki, September 27-30, 2012

OVERVIEW

0. QUANTUM LOGICS AND AUTOMATON LOGICS
1. ND-AUTOMATA
2. LOGIC OF AN AUTOMATON
3. STATES AND OBSERVABLES ON A LOGIC

Early history

Early history

1. D.Finkelstein, S.R.Finkelstein, Computational Complementarity, Int. J. Theor. Phys. 22 (1983), 753-779.
2. Ja.P.Tsirulis, Variations on the theme of quantum logic (Russian), In: E.A.Ikaunieks e.a. (eds), Algebra i Diskretnaya Matematika, LGU, Riga, 1984, 146-158.

Early history

1. D.Finkelstein, S.R.Finkelstein, Computational Complementarity, Int. J. Theor. Phys. 22 (1983), 753-779.
2. Ja.P.Tsirulis, Variations on the theme of quantum logic (Russian), In: E.A.Ikaunieks e.a. (eds), Algebra i Diskretnaya Matematika, LGU, Riga, 1984, 146-158.
3. A.A.Grib, R.R.Zapatrin, Automata simulating quantum logics, Int. J. Theor. Phys. 29 (1990), 113-123.
4. A.A.Grib, R.R.Zapatrin, Macroscopic realizations of quantum logics, Int. J. Theor. Phys. 31 (1992), 1669-1687.

Early history

1. D.Finkelstein, S.R.Finkelstein, Computational Complementarity, Int. J. Theor. Phys. 22 (1983), 753-779.
2. Ja.P.Tsirulis, Variations on the theme of quantum logic (Russian), In: E.A.Ikaunieks e.a. (eds), Algebra i Diskretnaya Matematika, LGU, Riga, 1984, 146-158.
3. A.A.Grib, R.R.Zapatrin, Automata simulating quantum logics, Int. J. Theor. Phys. 29 (1990), 113-123.
4. A.A.Grib, R.R.Zapatrin, Macroscopic realizations of quantum logics, Int. J. Theor. Phys. 31 (1992), 1669-1687.
5. M.Schaller, K.Svozil, Partition logics of automata, Il Nuovo Cimento 109B (1994), 167-176.
6. M.Schaller, K.Svozil, Automaton partition logic versus quantum logic, Int. J. Theor. Phys. 34 (1995), 1741-1749.
7. M.Schaller, K.Svozil, Automaton logic, Int. J. Theor. Phys. 35 (1996), 911-940.

Early history

1. D.Finkelstein, S.R.Finkelstein, Computational Complementarity, Int. J. Theor. Phys. 22 (1983), 753-779.
2. Ja.P.Tsirulis, Variations on the theme of quantum logic (Russian), In: E.A.Ikaunieks e.a. (eds), Algebra i Diskretnaya Matematika, LGU, Riga, 1984, 146-158.
3. A.A.Grib, R.R.Zapatrin, Automata simulating quantum logics, Int. J. Theor. Phys. 29 (1990), 113-123.
4. A.A.Grib, R.R.Zapatrin, Macroscopic realizations of quantum logics, Int. J. Theor. Phys. 31 (1992), 1669-1687.
5. M.Schaller, K.Svozil, Partition logics of automata, Il Nuovo Cimento 109B (1994), 167-176.
6. M.Schaller, K.Svozil, Automaton partition logic versus quantum logic, Int. J. Theor. Phys. 34 (1995), 1741-1749.
7. M.Schaller, K.Svozil, Automaton logic, Int. J. Theor. Phys. 35 (1996), 911-940.
J.CTTrulis, Algebraic structures related with the logic of a discrete black box (in preparation).

1. ND-AUTOMATA

1. ND-AUTOMATA

Definition

By a (non-deterministic) automaton we mean a quintuple A:= (X, Y, Z, δ, λ), where

- X is the set of inputs,
- Y is the set of outputs,
- Z is the set of states,
- δ is the next-state function $X \times Z \rightarrow \mathcal{P}_{0}(Z)$,
- λ is the output function $X \times Z \rightarrow \mathcal{P}_{0}(Y)$,
all without any finiteness assumptions.
($\mathcal{P}_{0}(M)$ stands for the set of non-empty subsets of M)

1. ND-AUTOMATA

Definition

By a (non-deterministic) automaton we mean a quintuple A := $(X, Y, Z, \delta, \lambda)$, where

- X is the set of inputs,
- Y is the set of outputs,
- Z is the set of states,
- δ is the next-state function $X \times Z \rightarrow \mathcal{P}_{0}(Z)$,
- λ is the output function $X \times Z \rightarrow \mathcal{P}_{0}(Y)$, all without any finiteness assumptions.
($\mathcal{P}_{0}(M)$ stands for the set of non-empty subsets of M)

We keep sets X and Y fixed.

Some notation

- $X^{*}:=\mathrm{U}\left(X^{n}: n \geq 0\right)$ is the set of all input strings,
- $Y^{*}:=\mathrm{U}\left(Y^{n}: n \geq 0\right)$ is the set of all output sytrings,
- o is the empty string,
- $|\alpha|$ is the length of a string $\alpha \in X^{*} \cup Y^{*}$,
- $\alpha \sqsubset \beta$: the string α is an initial segment of β.
- $\alpha \sqcap \beta$: the greatest common initial segment of α and β.
- $Y_{\alpha}:=Y^{|\alpha|}$ for $\alpha \in X^{*}$.

If $\alpha, \beta \in X^{*},|\alpha| \leq|\beta|$ and $L \subseteq Y_{\beta}$, then

- the restriction of L to $|\alpha|$ is

$$
L \mid \alpha:=\left\{\gamma \in Y_{\alpha}: \gamma \sqsubset \delta \text { for some } \delta \in K\right\},
$$

ND-operators and generalized states

```
A (sequential) ND-operator is a mapping f: X *}->\mathcal{P}(\mp@subsup{Y}{}{*})\mathrm{ such
that
- if }\alpha\in\mp@subsup{X}{}{*}\mathrm{ , then }f(\alpha)\subseteq\mp@subsup{Y}{\alpha}{}
- if }\alpha\sqsubset\beta\in\mp@subsup{X}{}{*}\mathrm{ , then }f(\alpha)=f(\beta)|\alpha\mathrm{ .
```


ND-operators and generalized states

```
A (sequential) ND-operator is a mapping f: X * }->\mathcal{P}(\mp@subsup{Y}{}{*})\mathrm{ such
that
- if }\alpha\in\mp@subsup{X}{}{*}\mathrm{ , then }f(\alpha)\subseteq\mp@subsup{Y}{\alpha}{}
- if }\alpha\sqsubset\beta\in\mp@subsup{X}{}{*}\mathrm{ , then }f(\alpha)=f(\beta)|\alpha\mathrm{ .
```

ND operators, if considered as sets of ordered pairs, are ordered by inclusion:

$$
f \subseteq g \text { iff } f(\alpha) \subseteq g(\alpha) \text { for all } \alpha \in X^{*}
$$

ND-operators and generalized states

```
A (sequential) ND-operator is a mapping f: X *}->\mathcal{P}(\mp@subsup{Y}{}{*})\mathrm{ such
that
- if }\alpha\in\mp@subsup{X}{}{*}\mathrm{ , then }f(\alpha)\subseteq\mp@subsup{Y}{\alpha}{}\mathrm{ ,
- if \alpha}\sqsubset\beta\in\mp@subsup{X}{}{*}\mathrm{ , then }f(\alpha)=f(\beta)|\alpha\mathrm{ .
```

ND operators, if considered as sets of ordered pairs, are ordered by inclusion:

$$
f \subseteq g \text { iff } f(\alpha) \subseteq g(\alpha) \text { for all } \alpha \in X^{*}
$$

We can associate with any ND-automaton A an ND-operator T as follows: for every $\alpha \in X^{*}$,

$$
T(\alpha):=\text { the set of all possible responses to } \alpha .
$$

More generally, every macrostate $Z_{0} \subseteq Z$ induces an ND-operator $T_{Z_{0}}$ as follows:

$$
\begin{aligned}
& \left(y_{1} y_{2} \cdots y_{n}\right) \in T_{Z_{0}}\left(x_{1} x_{2} \cdots x_{m}\right) \text { iff } \\
& \quad n=m \text { and } y_{i} \in \lambda\left(x_{i}, z_{i}\right) \text { with } z_{1} \in Z_{0} \text { and } z_{i+1} \in \delta\left(x_{i}, z_{i}\right) .
\end{aligned}
$$

In particular, $T_{Z}=T$, and $T_{\varnothing}=\varnothing$.

More generally, every macrostate $Z_{0} \subseteq Z$ induces an ND-operator $T_{Z_{0}}$ as follows:

$$
\begin{aligned}
& \left(y_{1} y_{2} \cdots y_{n}\right) \in T_{Z_{0}}\left(x_{1} x_{2} \cdots x_{m}\right) \text { iff } \\
& \quad n=m \text { and } y_{i} \in \lambda\left(x_{i}, z_{i}\right) \text { with } z_{1} \in Z_{0} \text { and } z_{i+1} \in \delta\left(x_{i}, z_{i}\right) .
\end{aligned}
$$

In particular, $T_{Z}=T$, and $T_{\varnothing}=\varnothing$.

By a generalized state of A we mean any ND-operator f such that $f \subseteq T$.

More generally, every macrostate $Z_{0} \subseteq Z$ induces an ND-operator $T_{Z_{0}}$ as follows:

$$
\begin{aligned}
& \left(y_{1} y_{2} \cdots y_{n}\right) \in T_{Z_{0}}\left(x_{1} x_{2} \cdots x_{m}\right) \text { iff } \\
& \quad n=m \text { and } y_{i} \in \lambda\left(x_{i}, z_{i}\right) \text { with } z_{1} \in Z_{0} \text { and } z_{i+1} \in \delta\left(x_{i}, z_{i}\right) .
\end{aligned}
$$

In particular, $T_{Z}=T$, and $T_{\varnothing}=\varnothing$.

By a generalized state of A we mean any ND-operator f such that $f \subseteq T$.

The poset of all generalized states is closed under arbitrary nonempty unions and forms a complete lattice with top T and bottom \varnothing.

Experiments and observables

A simple experiment on an automaton A consists of applying an input string to \mathbf{A} in an arbitrary (unknown!) initial state and registering the response string produced by the automaton (the outcome).
(An adaptive experiment is determined by a partial function $Y^{*} \rightarrow X$.)

Experiments and observables

A simple experiment on an automaton \mathbf{A} consists of applying an input string to \mathbf{A} in an arbitrary (unknown!) initial state and registering the response string produced by the automaton (the outcome).
(An adaptive experiment is determined by a partial function $Y^{*} \rightarrow X$.)

We identify a simple experiment with the corresponding input string.

Experiments and observables

A simple experiment on an automaton \mathbf{A} consists of applying an input string to \mathbf{A} in an arbitrary (unknown!) initial state and registering the response string produced by the automaton (the outcome).
(An adaptive experiment is determined by a partial function $Y^{*} \rightarrow X$.)

We identify a simple experiment with the corresponding input string.

An observable of \mathbf{A} associated with an experiment α is any function ϕ whose domain is $T(\alpha)$.
The observable is measured first fulfilling the experiment α and then calculating the value of ϕ on the registered outcome.
2. LOGIC OF AN ND-AUTOMATON

2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An (experimental) statement about \mathbf{A} is a pair (α, K) with $\alpha \in X^{*}$ and $K \subseteq T(\alpha)$ interpreted as an assertion the outcome of α lies in K.

2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An (experimental) statement about \mathbf{A} is a pair (α, K) with $\alpha \in X^{*}$ and $K \subseteq T(\alpha)$ interpreted as an assertion the outcome of α lies in K.
(α, K) is true in state $z: T_{z}(\alpha) \subseteq K$.
(α, K) is false in state $z: K \cap T_{z}(\alpha)=\varnothing$.
(α, K) is true of \mathbf{A} if it is true in all states z.
(α, K) is possible in \mathbf{A} if it is true in some state z.

2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An (experimental) statement about \mathbf{A} is a pair (α, K) with $\alpha \in X^{*}$ and $K \subseteq T(\alpha)$ interpreted as an assertion the outcome of α lies in K
(α, K) is true in state $z: T_{z}(\alpha) \subseteq K$.
(α, K) is false in state $z: K \cap T_{z}(\alpha)=\varnothing$.
(α, K) is true of \mathbf{A} if it is true in all states z.
(α, K) is possible in \mathbf{A} if it is true in some state z.

Let E stand for the set of all statements.

Entailment

```
(\alpha,K) entails ( }\beta,L\mathrm{ ) (in symbols, ( }\alpha,K)\preceq(\beta,L))
    informally:
any possible outcome of \beta compatible with the proviso that the statement
(\alpha,K) is true must belong to L
    formally:
for all }\delta\inT(\beta)\mathrm{ , if }\delta|(\alpha\sqcap\beta)\inK|(\alpha\sqcap\beta), then \delta\inL.
```


Entailment

$$
(\alpha, K) \text { entails }(\beta, L) \text { (in symbols, }(\alpha, K) \preceq(\beta, L) \text {): }
$$

informally:
any possible outcome of β compatible with the proviso that the statement (α, K) is true must belong to L
formally:
for all $\delta \in T(\beta)$, if $\delta|(\alpha \sqcap \beta) \in K|(\alpha \sqcap \beta)$, then $\delta \in L$.
Proposition
The relation \preceq is a preorder on E,
$(\alpha, K) \preceq(\alpha, L)$ iff $K \subseteq L$,
$(\alpha, \varnothing) \preceq(\beta, L)$,
$(\alpha, K) \preceq(\beta, T(\beta))$,
if $(\alpha, K) \preceq(\beta, L)$, then $(\beta,-L) \preceq(\alpha,-K)$.

Equivalent statements

In the classical propositional logic equivalent formulas present the same proposition, and all propositions form a Boolean algebra.

Equivalent statements

In the classical propositional logic equivalent formulas present the same proposition, and all propositions form a Boolean algebra.
(α, K) and (β, L) are equivalent (in symbols, $(\alpha, K) \simeq(\beta, L))$ if they entail each other:

$$
(\alpha, K) \preceq(\beta, L) \text { and }(\beta, L) \preceq(\alpha, K) \text {. }
$$

Equivalent statements

In the classical propositional logic equivalent formulas present the same proposition, and all propositions form a Boolean algebra.
(α, K) and (β, L) are equivalent (in symbols, $(\alpha, K) \simeq(\beta, L))$ if they entail each other:

$$
(\alpha, K) \preceq(\beta, L) \text { and }(\beta, L) \preceq(\alpha, K) \text {. }
$$

> The equivalence classes $[(\alpha, K)]$ of \simeq are considered as experimental propositions about \mathbf{A}.

The logic

The logic of \mathbf{A} is defined to be the set $\mathrm{L}:=E / \simeq$ of all propositions. The preorder \preceq induces, in a standard way, an order relation \leq on \mathbf{L} :

$$
[(\alpha, K)] \leq[(\beta, L)] \text { iff }(\alpha, K) \preceq(\beta, L) .
$$

The Iogic

The logic of \mathbf{A} is defined to be the set $\mathbf{L}:=E / \simeq$ of all propositions. The preorder \preceq induces, in a standard way, an order relation \leq on \mathbf{L} :

$$
[(\alpha, K)] \leq[(\beta, L)] \text { iff }(\alpha, K) \preceq(\beta, L) .
$$

We may consider the logic as an algebraic system $\left(\mathbf{L}, \leq,{ }^{\perp}, 0,1\right)$, where the elements 0,1 of \mathbf{L} and an operation \perp on \mathbf{L} are defined as follows:

$$
0:=[(\alpha, \varnothing)], \quad 1:=[(\alpha, T(\alpha))], \quad[(\alpha, K)]^{\perp}:=[(\alpha,-K)]
$$

Proposition

The logic \mathbf{L} is an orthoposet, i.e., for all $p, q \in \mathbf{L}$

- $0 \leq p \leq 1$,
- $p^{\perp \perp}=p$,
- if $p \leq q$, then $q^{\perp} \leq p^{\perp}$,
- $p \wedge p^{\perp}=0$ and $p \vee p^{\perp}=1$.

Proposition

The logic \mathbf{L} is an orthoposet, i.e., for all $p, q \in \mathbf{L}$

- $0 \leq p \leq 1$,
- $p^{\perp \perp}=p$,
- if $p \leq q$, then $q^{\perp} \leq p^{\perp}$,
- $p \wedge p^{\perp}=0$ and $p \vee p^{\perp}=1$.

Normally, joins and meets in \mathbf{L} are partial operations.

Proposition

The logic \mathbf{L} is an orthoposet, i.e., for all $p, q \in \mathbf{L}$

- $0 \leq p \leq 1$,
- $p^{\perp \perp}=p$,
- if $p \leq q$, then $q^{\perp} \leq p^{\perp}$,
- $p \wedge p^{\perp}=0$ and $p \vee p^{\perp}=1$.

In an orthoposet, De Morgan laws hold in the following form: if one side in the subsequent equalities is defined, then the other also is, and both are equal:

- $(p \vee q)^{\perp}=p^{\perp} \wedge q^{\perp}$,
- $(p \wedge q)^{\perp}=p^{\perp} \vee q^{\perp}$.

For every $\alpha \in X^{*}$, let
$L_{\alpha}:=\{[(\alpha, K)]: K \subseteq T(\alpha)\}$
be the set of all propositions decidable by the experiment α.

For every $\alpha \in X^{*}$, let

$$
L_{\alpha}:=\{[(\alpha, K)]: K \subseteq T(\alpha)\}
$$

be the set of all propositions decidable by the experiment α.

We say that two or more propositions are coherent if they all belong to the same component L_{α}.
We write $p \downharpoonleft q$ to mean that p and q are coherent.
Only coherent propositions can be (experimentally) decided simultaneously.

For every $\alpha \in X^{*}$, let $L_{\alpha}:=\{[(\alpha, K)]: K \subseteq T(\alpha)\}$
be the set of all propositions decidable by the experiment α.

We say that two or more propositions are coherent if they all belong to the same component L_{α}.
We write $p \downharpoonleft q$ to mean that p and q are coherent.
Only coherent propositions can be (experimentally) decided simultaneously.

Theorem

Each subset L_{α} contains 0,1 and is closed under operations \vee, \wedge, \perp. Moreover, it forms a complete atomistic Boolean subalgebra of L.

3. STATES AND OBSERVABLES ON A LOGIC

3. STATES AND OBSERVABLES ON A LOGIC

Let \mathbf{L} be the logic of an ND-automaton \mathbf{A}.

STATES AND OBSERVABLES ON A LOGIC

Let \mathbf{L} be the logic of an ND-automaton \mathbf{A}.

Filters and states

```
A filter of L is a subset F such that
- 1 \in F,
- if }p\inF,q\inL\mathrm{ and }p\leqq\mathrm{ , then }q\inF\mathrm{ ,
- if }p,q\inF\mathrm{ and }p\downharpoonleftq\mathrm{ , then }p\wedgeq\inF\mathrm{ .
```

A filter F is said to be complete if it is closed under arbitrary
coherent meets.

For example, $\{1\}$ and L itself are examples of complete filters.

STATES AND OBSERVABLES ON A LOGIC

Let \mathbf{L} be the logic of an ND-automaton \mathbf{A}.

Filters and states

```
A filter of L is a subset F such that
- 1 \in F ,
- if }p\inF,q\inL\mathrm{ and }p\leqq\mathrm{ , then }q\inF\mathrm{ ,
- if }p,q\inF\mathrm{ and }p\downharpoonleftq\mathrm{ , then }p\wedgeq\inF\mathrm{ .
A filter F is said to be complete if it is closed under arbitrary
coherent meets.
```

Filters of L may be interpreted as truth sets in \mathbf{L}.

Theorem

(a) if f is a generalized state of \mathbf{A}, then the subset

$$
f^{\dagger}:=\{[(\alpha, K)] \in L: f(\alpha) \subseteq K\}
$$

is a complete filter.
(b) If F is a complete filter of L , then the mapping

$$
F^{\ddagger}:=\alpha \mapsto \cap(K:[(\alpha, K)] \in F)
$$

is a generalized state of \mathbf{A}.
(c) The transformations \dagger and \ddagger are mutually inverse and establish an anti-isomorphism between the lattices of generalized states and complete filters.

Theorem

(a) if f is a generalized state of \mathbf{A}, then the subset

$$
f^{\dagger}:=\{[(\alpha, K)] \in L: f(\alpha) \subseteq K\}
$$

is a complete filter.
(b) If F is a complete filter of \mathbf{L}, then the mapping
$F^{\ddagger}:=\alpha \mapsto \cap(K:[(\alpha, K)] \in F)$
is a generalized state of \mathbf{A}.
(c) The transformations \dagger and \ddagger are mutually inverse and establish an anti-isomorphism between the lattices of generalized states and complete filters.
f^{\dagger} is the set of propositions true in the generalized state f
F^{\ddagger} is a generalized state in which just propositions from F are true.

Blocks and observables

Two elements p and q of L are said to be orthogonal (in symbols, $p \perp q$), if $p \leq q^{\perp}$ or, equivalently, $q \leq p^{\perp}$.
A subset of \mathbf{L} is orthogonal if it is empty or its elements are mutually orthogonal.

A block in \mathbf{L} is a maximal orthogonal subset every subset of which has a join.

Blocks and observables

Two elements p and q of L are said to be orthogonal (in symbols, $p \perp q$), if $p \leq q^{\perp}$ or, equivalently, $q \leq p^{\perp}$.
A subset of \mathbf{L} is orthogonal if it is empty or its elements are mutually orthogonal.

```
A block in L is a maximal orthogonal subset every subset of
which has a join.
```

In the rest, we assume that Y (hence, also every $T(\alpha)$) is finite, and deal only with finite maximal orthogonal subsets.

Blocks and observables

Two elements p and q of L are said to be orthogonal (in symbols, $p \perp q$), if $p \leq q^{\perp}$ or, equivalently, $q \leq p^{\perp}$.
A subset of \mathbf{L} is orthogonal if it is empty or its elements are mutually orthogonal.

```
A block in L is a maximal orthogonal subset every subset of
which has a join.
```

In the rest, we assume that Y (hence, also every $T(\alpha)$) is finite, and deal only with finite maximal orthogonal subsets.

A maximal orthogonal subset B of \mathbf{L} is a block if and only if it is coherent.

Lemma

(a) If $\alpha \in X^{*}$, then the set

$$
\left.B_{\alpha}:=\{[\alpha, \beta)]: \beta \in T(\alpha)\right\}
$$

is a block, and the transfer $\alpha \mapsto B_{\alpha}$ is injective.
(b) More generally, if Q is a partition of $T(\alpha)$, then the set $\{[(\alpha, K)]: K \in Q\}$
is a block.
(c) In particular, every observable ϕ associated with α induces a partition of $T(\alpha)$ and, hence, a block B_{ϕ}.
(d) Every block of L arises as in (c).

An observable for L is a function Φ whose domain is a block.

An observable for L is a function Φ whose domain is a block.

If

- ϕ is an observable associated with an experiment α,
- Q_{α} is the corresponding partition of $T(\alpha)$, then, setting for every $K \in Q_{\alpha}$,
$\phi^{\dagger}([(\alpha, K)]):=\phi(\beta), \quad$ where β is any element of K,
we obtain a function ϕ^{\dagger} defined elsewhere on the blok B_{ϕ}, i.e., an observable for \mathbf{L},

An observable for L is a function Φ whose domain is a block.

If

- ϕ is an observable associated with an experiment α,
- Q_{α} is the corresponding partition of $T(\alpha)$,
then, setting for every $K \in Q_{\alpha}$,
$\phi^{\dagger}([(\alpha, K)]):=\phi(\beta), \quad$ where β is any element of K,
we obtain a function ϕ^{\dagger} defined elsewhere on the blok B_{ϕ}, i.e., an observable for \mathbf{L},

Every observable Φ for \mathbf{L} can be obtained in this way from an appropriate (and unique) observable Φ^{\ddagger} of \mathbf{A}.

More formally:

Theorem

(a) If ϕ is an observable of \mathbf{A} associated with an experiment α, then the function ϕ^{\dagger} on B_{ϕ} defined by

$$
\phi^{\dagger}([(\alpha, K)]):=\phi(\beta) \text { where } \beta \in K
$$

is an observable for L.
(b) If Φ is an observable for L with domain $B \subseteq L_{\alpha}$ for some $\alpha \in X^{*}$, then the function Φ^{\ddagger} on $T(\alpha)$ defined by

$$
\Phi^{\ddagger}(\beta):=\Phi([(\alpha, K)]) \text { where } K \ni \beta
$$

is an observable of \mathbf{A}.
(c) The transformations \dagger and \ddagger are mutually inverse and establish a bijective correspondence between observables of \mathbf{A} and observables for \mathbf{L}.

