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Background



The main argument in favor of P ≠ NP is the total 
lack of fundamental progress in the area of 
exhaustive search.  This is, in my opinion, a very 
weak argument.  The space of algorithms is very 
large and we are only at the beginning of its 
exploration.
                        
                                       –– Moshe  Vardi

[Lane A. Hemaspaandra, 
 SIGACT News Complexity Theory Column 36, 
 SIGACT News 33:34–47, June 2002.]

”

“



• Take your favorite NP-complete problem

• Is there an algorithm that 

• ... perhaps does not run in polynomial time ...

• ... but still beats exhaustive search?

• E.g. k-coloring an n-vertex graph
–– can one do better than O*(kⁿ) time,
     in the worst case, on arbitrary graphs?



[Fomin & 
Kratsch,
Springer
2010]

“Bad, but better” 
algorithms for hard 

problems



• For many NP-complete graph problems, 
currently the fastest known exact 
algorithms rely on algebraic techniques

• Examples: 
graph coloring, k-path, Steiner tree, Hamilton 
cycle, k-clique, triangle packing, ...

• This talk –– one technique and one problem

• fast Möbius inversion on lattices 

• ... illustrated with graph coloring and the 
subset lattice



Fast Möbius inversion
on lattices



(Finite) lattices
• Combinatorial definition:

A (finite) partially ordered set (L,≤) 
such that
1) there is a minimum element;  and
2) any two elements x,y ∈ L have 
    a least upper bound (join) x∨y

• Algebraic definition:
A (finite) commutative idempotent 
semigroup (L,∨) with identity
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Example: Subset lattice
• The set of all 2ⁿ subsets of an n-element set

• Partially ordered by subset inclusion

Join = Union
Meet =  Intersection

1234

123 124 134 234

12 13 14 23 24 34

1 2 3 4



• The set of all positive 
divisors of 
a positive integer M

• Partially ordered by 
divisibility

Example: Divisor lattice

1

2

4

8

3

9 6

1218

36 24

72

Join = lcm
Meet = gcd
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Join-irreducible elements

• An element z ∈ L is join-irreducible
 if z = x⋁y implies z = x or z = y

• The minimum (“zero”) element is 
always join-irreducible

• Algebraic view:
The set of nonzero join-irreducibles
is a minimal set of generators for (L,∨) = “down-

degree one”
in the lattice

diagram



Example: Subset lattice
• The set of all subsets of an n-element set

• Partially ordered by subset inclusion

1234

123 124 134 234

12 13 14 23 24 34

1 2 3 4

Nonzero
join-irreducibles

= singletons



• The set of all positive 
divisors of 
a positive integer M

• Partially ordered by 
divisibility

Example: Divisor lattice
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72

Nonzero
join-irreducibles

= prime power divisors



• Let (L,≤) be a lattice

• Let R be a ring

• For f : L → R, define the zeta transform 
fζ : L → R for all y ∈ L by fζ(y) = ∑                   f(x)

• The inverse of ζ is the Möbius transform μ

Möbius inversion [Rota]
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Analogy:
Zeta transform     
   ~ Fourier transform
Möbius transform 
   ~ inv. Fourier transform

x∈L : x≤y



In the language
of linear algebra

• Suppose L has v elements

• f is a row vector of length v 
with positions indexed by L

• ζ is a v by v matrix with
ζ(x,y)=1 if x≤y;    
ζ(x,y)=0 otherwise

• Zeta transform:
Right-multiply f with ζ 
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Complexity of 
evaluation

• Assume that L is fixed, |L| = v

• Task: 
Given f : L → R as input, 
compute fζ : L → R

• fζ can clearly be computed 
in O(v²) arithmetic 
operations in R

• But can we go faster?
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Arithmetic circuits
• How many gates are sufficient / necessary in 

an arithmetic circuit that computes fζ from f ?

• Trivial circuit has O(v²) gates
–––but do there exist smaller circuits?

-

+

⋅

f ζ fζ



Why?
• Polynomial multiplication:

(1x⁰+1x¹+3x²) ⋅ (1x⁰+2x¹) = 1x⁰+3x¹+5x²+6x³

• ... fast multiplication via the fast Fourier 
transform (FFT) 

• “Lattice polynomial” multiplication:

(1{a,b} + 3{c,d}) ∪ (1{b,c} + 2{d}) = 
     = 1{a,b,c} + 3{b,c,d} + 2{a,b,d} + 6{c,d} 

• ... fast multiplication via the fast zeta transform 
& fast Möbius transform (FZT/FMT)



Fast multiplication in 
the semigroup algebra of (L,≤)

ζ

ζ
μ⋅

• Given f : L → R and g : L → R as input

• The product f∨g : L → R is defined 

for all z ∈ L by  f∨g(z) = ∑                           f(x)g(y)

f

g

f∨g∨

[Solomon 1967; Kennes 1992]

x,y∈L : x∨y=z



• Claim.  
        (f∨g)ζ = (fζ)⋅(gζ)

• Proof.
(f∨g)ζ(u) = ∑          (f∨g)(z)
             = ∑          ∑               f(x)g(y)
             = ∑              f(x)g(y)
             = ∑                 f(x)g(y)
             = ∑           f(x) ∑           g(y)
             = fζ(u)⋅gζ(u)

ζ

ζ
μ⋅

[Solomon 1967; Kennes 1992]

x,y∈L : x∨y=z

z∈L : z≤u

z∈L : z≤u

x,y∈L : x∨y≤u

x,y∈L : x≤u, y≤u

x∈L : x≤u y∈L : y≤u



Example (subset lattice, n=3)
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• The semigroup algebra of a lattice 
decomposes into a direct sum of
1-dimensional subalgebras
[Schwarz 1954; Hewitt & Zuckerman 1955]

• The zeta transform is an algebra 
isomorphism from standard representation 
to the direct sum [Solomon 1967]

• Algorithmic significance:
Fast multiplication algorithm (for the 
subset lattice), discovered in the context of 
automating Dempster–Schafer theory
[Kennes 1992; Yates 1937]

Earlier work



Applications
• (Currently fastest) exact algorithms for 

many hard problems such as graph 
colouring 
[Björklund, Husfeldt & Koivisto 2009]

• Constructing FFTs for inverse semigroups 
[Malandro & Rockmore 2010]

• Analysis of Markov chains on semigroups 
[Bidigare, Hanlon & Rockmore 1999; 
 Brown 2000; Brown & Diaconis 1998]



Earlier work
(upper bounds)

• Trivial upper bound O(v²)

• There exists an arithmetic circuit of size
O(v log v) for the zeta transform on the subset 
lattice of an n-element set, v = 2ⁿ [Yates 1937]

• There exists an arithmetic circuit of size
O(v log³ v) for the zeta transform on the poset 
structure of the rook monoid Rn,  v = |Rn|
[Malandro 2010]



• Trivial lower bound Ω(v) 

• Most lattices with v elements have zeta circuits 
of size Ω(v    / log v)  [Klotz and Lucht 1971] 

• Every monotone circuit for the zeta transform 
on a lattice L with e edges in the lattice diagram 
has Ω(e) gates [Kennes 1992]

Earlier work
(lower bounds)

3/2



Main result

• Let (L,≤) be a lattice with v elements, 
n of which are nonzero and join-irreducible

• Then, there exist arithmetic circuits of size O(vn) 
both for the zeta transform on L  
and for the Möbius transform on L

• (The claim holds also if join-irreducible 
is replaced with meet-irreducible)

Motivation:  Many combinatorially useful 
                  lattices have n = O(polylog v)



Yates’s circuit for ({0,1}ⁿ,⊆)
Example:  n = 3 • The output at y ∈ {0,1}ⁿ 

is the sum of values at all 
inputs x ∈ {0,1}ⁿ with x⊆y

• Idea:
There is a unique 
“ordered walk” 
from x to y in n steps,
where step i = 1,2,...,n 
changes coordinate i
(if necessary)
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Graph coloring



Graph coloring

Input:  
1.  A graph G with n vertices 
2.  An integer k

Question:
Can the vertices of G be 
colored with k colors 
such that no edge is 
monochromatic?

Yes:

k = 3



Coloring
by brute force

There are kⁿ ways to color
the vertices 
–– try out all possible colorings 
    in time O*(kⁿ)

[ The O*(  )-notation suppresses factors
polynomial in the input size, e.g. O*(kⁿ) = O(kⁿpoly(n)). ]



Current best 
for graph coloring:

O*(2ⁿ) time

[Björklund–Husfeldt–
Koivisto 2009]



Every k-coloring partitions the vertices of G into k sets 
(S1, S2, ..., Sk), each of which is an independent set in G



Graph coloring
(restated)

Question:
Can the vertices of G be 
partitioned into k sets
(S1, S2, ..., Sk), each of which 
is an independent set? 

Yes:

k = 3



Graph coloring
(restated again)

Question:
Do there exist independent 
sets (S1, S2, ..., Sk) with 
S1 ∪ S2 ∪ ... ∪ Sk =  V  ?

Yes:

k = 3



Set Cover (Dense)

Input:
1.   A family F of subsets of [n]={1,2,...,n}
2.   An integer k

Question:
Does there exist a k-tuple (S1, S2, ..., Sk) ∈ F   
such that S1 ∪ S2 ∪ ... ∪ Sk = [n] ?

Note: 
To solve graph coloring, let F consist of the 
independent sets of G –– we have |F | ≤ 2ⁿ 

k



#Subset Cover (Dense)

Input:
1.   A family F of subsets of [n]={1,2,...,n}
2.   An integer k

Output:
For each Z⊆[n], the number ck(Z) of k-tuples 
(S1, S2, ..., Sk) ∈ F   such that S1 ∪ S2 ∪ ... ∪ Sk = Z

Idea: 
Assume ck-1(Z) is available for each Z⊆[n] 
–– using this data, compute ck(Z) for each Z⊆[n] 

k



The union product
• Identify subsets of [n] with binary strings in {0,1}ⁿ

• Let R be a ring (e.g. the integers)

• Let f : {0,1}ⁿ → R and g : {0,1}ⁿ → R

• Define the union product f∪g : {0,1}ⁿ → R
for all Z ⊆ [n] by

            f∪g(Z) = ∑                    f(X)g(Y)
X,Y∈{0,1}ⁿ : X∪Y=Z

To solve #Subset Cover:
1)  Let f be an indicator function for F ⊆ {0,1}ⁿ
2)  Then c    = f,  and c    = c       ∪ f  for k = 2,3,...k k –11



• Given f : {0,1}ⁿ → R and g : {0,1}ⁿ → R as input, 
the union product f ∪ g : {0,1}ⁿ → R can be 
computed in O(2ⁿn) operations in R 
[Kennes 1992,  Yates 1937]

• #Subset Cover can be solved in time O*(2ⁿ)
#Subset Partition can be solved in time O*(2ⁿ)
[Björklund–Husfeldt–Koivisto 2009]

• #Graph Coloring can be solved in time O*(2ⁿ)
[Björklund–Husfeldt–Koivisto 2009]



The proof in more 
detail



Main result

• Let (L,≤) be a lattice with v elements, 
n of which are nonzero and join-irreducible

• Then, there exist arithmetic circuits of size O(vn) 
both for the zeta transform on L  
and for the Möbius transform on L

• (The claim holds also if join-irreducible 
is replaced with meet-irreducible)

Motivation:  Many combinatorially useful 
                  lattices have n = O(polylog v)



• Let (L,≤) be a lattice with v elements, 
and let N⊆L be the n nonzero join-irreducibles

• Denote by P(N) the set of all subsets of N

• Step 1 (basic lattice theory):
Embed (L,≤) into (P(N),⊆) via the “spectrum map” S

• Step 2 (basic lattice theory):
Because the image F=S(L) is intersection-closed in P(N), 
there is a unique closure operator on P(N) with image F

• Step 3 (novel circuits for ∩- or ∪-closed set families):
Construct circuits for the zeta & Möbius transforms 
on (F,⊆) by taking closure of ordered walks on (P(N),⊆)

Proof outline



• Define the spectrum map
S : L → P(N) for all x ∈ L by

   S(x) = { i ∈ N :  i≤x }  

• a)  x = ⋁S(x) for all x ∈ L

• b)  x≤y iff S(x) ⊆ S(y) 
     for all x,y ∈ L

• c)  S(x∧y) = S(x)∩S(y) 
     for all x,y ∈ L

• S is an order-isomorphism from (L,≤) to (S(L),⊆)

• The image F=S(L) is intersection-closed:
N ∈ F and for all A,B ∈ F it holds that A∩B ∈ F

S(x) = “nonzero 
join-irreducibles

 below x”

1.



• A closure operator on (P(N),⊆)
is a map ⊥ :  P(N) → P(N) such that 
for all A,B ⊆ N it holds that 
1)  A ⊆ ⊥(A) ,
2)  A ⊆ B  implies  ⊥(A) ⊆ ⊥(B),  and 
3) ⊥(A) = ⊥(⊥(A))

• The image ⊥(P(N)) of a closure operator is 
intersection-closed

• Conversely, every intersection-closed 
family F ⊆P(N) defines a unique 
closure operator ⊥ whose image is F 

2.



Construction (1/2)
• Let F ⊆ {0,1}ⁿ be intersection-closed

• Key ideas: 
– Imitate Yates’s construction on {0,1}ⁿ
– ”Project” the construction using ⊥:  {0,1}ⁿ → F 

• Let x,y ∈ F  with x⊆y and let

   x = w(0) ⊆ w(1) ⊆ ... ⊆ w(n) = y 

be the ordered walk from x to y in {0,1}ⁿ

• Then, the “projection”

   x = ⊥(w(0)) ⊆ ⊥(w(1)) ⊆ ... ⊆ ⊥(w(n)) = y

is a walk from x to y in F

3.



Construction (2/2)
• An analysis of the projected walks gives a recurrence

on F that can be evaluated in n steps i = 1,2,...,n
analogously to Yates’s circuit

• Circuit for the Möbius transform on (F,⊆)
–– The recurrence for the zeta transform on (F,⊆)
    can be inverted by proceeding in order of 
    increasing size through the sets in F

• Dual result (for a union-closed family F ):
–– Elementwise complement of F is
     intersection-closed
–– Traverse the walk from x to y with x⊆y
     in reverse order from y to x

3.



Summary & Further work
• Main result:

There exist arithmetic circuits of size O(vn)
for the zeta & Möbius transforms on (L,≤) 
with v elements and n nonzero join-irreducibles

• Can we go faster? 
––Are there smaller circuits?

• Is there a family of lattices L that does not 
admit (monotone) circuits of size O(e), where 
e is the number of edges in the diagram of L ?

• Further parallels between Möbius inversion 
and Fourier analysis?


