Fast Möbius inversion with applications

Petteri Kaski

Helsinki Institute for Information Technology HIIT \& Department of Information and Computer Science Aalto University, Helsinki

Joint Estonian-Latvian Theory Days at Medzābaki, Lidaste 30 September 2012

Joint work with

Andreas Björklund (Lund),
Thore Husfeldt (Copenhagen), Mikko Koivisto (Helsinki), Jesper Nederlof (Utrecht) \& Pekka Parviainen (Stockholm)

Background

'6 The main argument in favor of $P \neq N P$ is the total lack of fundamental progress in the area of exhaustive search. This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration.,'

- Moshe Vardi
[Lane A. Hemaspaandra, SIGACT News Complexity Theory Column 36, SIGACT News 33:34-47, June 2002.]
- Take your favorite NP-complete problem
- Is there an algorithm that
- ... perhaps does not run in polynomial time ...
- ... but still beats exhaustive search?
- E.g. k-coloring an n-vertex graph
- can one do better than $\mathrm{O}^{*}\left(\mathrm{k}^{\mathrm{n}}\right)$ time, in the worst case, on arbitrary graphs?

Fedor V. Fomin

Dieter Kratsch

Exact

 Exponential Algorithms
[Fomin \& Kratsch, Springer 2010]

"Bad, but better" algorithms for hard problems

- For many NP-complete graph problems, currently the fastest known exact algorithms rely on algebraic techniques
- Examples: graph coloring, k-path, Steiner tree, Hamilton cycle, k-clique, triangle packing, ...
- This talk - one technique and one problem
- fast Möbius inversion on lattices
- ... illustrated with graph coloring and the subset lattice

Fast Möbius inversion on lattices

(Finite) lattices

- Combinatorial definition:

A (finite) partially ordered set (L, \leq) such that
I) there is a minimum element; and
2) any two elements $x, y \in L$ have a least upper bound (join) $x \vee y$

- Algebraic definition:

A (finite) commutative idempotent semigroup (L, \vee) with identity

V	P	q	r	s	t	u
p	P	q	r	s	t	u
q	q	q	s	s	u	u
r	r	s	r	s	t	u
s	s	s	s	s	u	u
t	t	u	t	u	t	u
u						

Example: Subset lattice

- The set of all 2^{n} subsets of an n-element set
- Partially ordered by subset inclusion

Example: Divisor lattice

- The set of all positive divisors of a positive integer M
- Partially ordered by divisibility

Join-irreducible elements

- An element $z \in L$ is join-irreducible if $z=x \vee y$ implies $z=x$ or $z=y$
- The minimum ("zero") element is always join-irreducible
- Algebraic view:

The set of nonzero join-irreducibles is a minimal set of generators for (L, v)

Example: Subset lattice

- The set of all subsets of an n-element set
- Partially ordered by subset inclusion

Example: Divisor lattice

- The set of all positive divisors of a positive integer M
- Partially ordered by divisibility

Nonzero
join-irreducibles
= prime power divisors

Möbius inversion [Rota]

- Let (L, \leq) be a lattice
- Let R be a ring

Analogy:

Zeta transform
~ Fourier transform
Möbius transform
~inv. Fourier transform

- For $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{R}$, define the zeta transform $f \zeta: L \rightarrow R$ for all $y \in L$ by $f(y)=\sum_{x \in L: x \leq y} f(x)$
- The inverse of ζ is the Möbius transform μ

In the language of linear algebra

 with positions indexed by L

- ζ is a \vee by \vee matrix with
$\zeta(x, y)=1$ if $x \leq y$;
$\zeta(x, y)=0$ otherwise
- Zeta transform:

Right-multiply f with ζ

Complexity of evaluation

- Assume that L is fixed, $|L|=v$
- Task:

Given $f: L \rightarrow R$ as input, compute f S: $L \rightarrow R$

- f can clearly be computed in $O\left(v^{2}\right)$ arithmetic operations in R
- But can we go faster?

	p	q	r	s	t	u
f	0	0	1	I	1	0
$f \zeta$	$?$	$?$	$?$	$?$	$?$	$?$

ζ	P	q	r	s	t	u
P	I	I	I	I	I	I
q	0	I	0	I	0	1
r	0	0	I	I	I	1
s	0	0	0	1	0	1
t	0	0	0	0	1	1
u	0	0	0	0	0	1

Arithmetic circuits

- How many gates are sufficient / necessary in an arithmetic circuit that computes $\lceil\zeta$ from f ?
- Trivial circuit has $O\left(v^{2}\right)$ gates
_—but do there exist smaller circuits?

Why?

- Polynomial multiplication:
$\left(1 x^{0}+1 x^{1}+3 x^{2}\right) \cdot\left(1 x^{0}+2 x^{1}\right)=1 x^{0}+3 x^{1}+5 x^{2}+6 x^{3}$
- ... fast multiplication via the fast Fourier transform (FFT)
- "Lattice polynomial" multiplication:

$$
\begin{aligned}
& (I\{a, b\}+3\{c, d\}) \cup(I\{b, c\}+2\{d\})= \\
& \quad=1\{a, b, c\}+3\{b, c, d\}+2\{a, b, d\}+6\{c, d\}
\end{aligned}
$$

- ... fast multiplication via the fast zeta transform \& fast Möbius transform (FZT/FMT)

Fast multiplication in

the semigroup algebra of (L, \leq)

- Given $f: L \rightarrow R$ and $g: L \rightarrow R$ as input
- The product $f \vee g: L \rightarrow R$ is defined for all $z \in L$ by $f \vee g(z)=\sum_{x, y \in L: x \vee y=z} f(x) g(y)$
[Solomon I967; Kennes 1992]

[Solomon I967; Kennes I992]
- Claim.

$$
(f \vee g) \zeta=(f \zeta) \cdot(g \zeta)
$$

- Proof.

$$
\begin{aligned}
(f \vee g) \zeta(u) & =\sum_{z \in L: z \leq u}(f v g)(z) \\
& =\sum_{z \in L: z \leq u} \sum_{x, y \in L: x v y=z} f(x) g(y) \\
& =\sum_{x, y L L: x v y \leq u} f(x) g(y) \\
& =\sum_{x, y \in L: x \leq u, y \leq u} f(x) g(y) \\
& =\sum_{x \in L: x \leq u} f(x) \sum_{y \in L: y \leq u} g(y) \\
& =f \zeta(u) \cdot g \zeta(u)
\end{aligned}
$$

Example (subset lattice, $n=3$)

Earlier work

- The semigroup algebra of a lattice decomposes into a direct sum of I-dimensional subalgebras [Schwarz I954; Hewitt \& Zuckerman 1955]
- The zeta transform is an algebra isomorphism from standard representation to the direct sum [Solomon 1967]
- Algorithmic significance:

Fast multiplication algorithm (for the subset lattice), discovered in the context of automating Dempster-Schafer theory [Kennes I992;Yates I937]

Applications

- (Currently fastest) exact algorithms for many hard problems such as graph colouring [Björklund, Husfeldt \& Koivisto 2009]
- Constructing FFTs for inverse semigroups [Malandro \& Rockmore 2010]
- Analysis of Markov chains on semigroups [Bidigare, Hanlon \& Rockmore 1999; Brown 2000; Brown \& Diaconis I998]

Earlier work

(upper bounds)

- Trivial upper bound $O\left(v^{2}\right)$
- There exists an arithmetic circuit of size $O(v \log v)$ for the zeta transform on the subset lattice of an n-element set, $v=2^{n}$ [Yates 1937]
- There exists an arithmetic circuit of size $O\left(v \log ^{3} v\right)$ for the zeta transform on the poset structure of the rook monoid $R_{n}, v=\left|R_{n}\right|$ [Malandro 2010]

Earlier work

(lower bounds)

- Trivial lower bound $\Omega(v)$
- Most lattices with v elements have zeta circuits of size $\Omega\left(\mathrm{v}^{3 / 2} / \log v\right)$ [Klotz and Lucht 197I]
- Every monotone circuit for the zeta transform on a lattice L with e edges in the lattice diagram has $\Omega(e)$ gates [Kennes 1992]

Main result

- Let (L, \leq) be a lattice with v elements, n of which are nonzero and join-irreducible
- Then, there exist arithmetic circuits of size $O(v n)$ both for the zeta transform on L and for the Möbius transform on L
- (The claim holds also if join-irreducible is replaced with meet-irreducible)

Motivation: Many combinatorially useful lattices have $\mathrm{n}=\mathrm{O}$ (polylog v)

Yates's circuit for $\left(\{0, I\}^{n}, \subseteq\right)$

Example: $\mathrm{n}=3$

- The output at $y \in\{0, I\}^{n}$ is the sum of values at all inputs $x \in\{0, I\}^{n}$ with $x \subseteq y$
- Idea:

There is a unique "ordered walk" from x to y in n steps, where step $i=1,2, \ldots, n$ changes coordinate \mathbf{i}
(if necessary)

Graph coloring

Graph coloring

Input:

I. A graph G with n vertices
2. An integer k

Question:

Can the vertices of G be colored with k colors such that no edge is monochromatic?

Yes:

Coloring by brute force

There are k^{n} ways to color the vertices

- try out all possible colorings
 in time $\mathrm{O}^{*}\left(\mathrm{k}^{\mathrm{n}}\right)$
[The O*()-notation suppresses factors polynomial in the input size, e.g. $O^{*}\left(k^{n}\right)=O\left(k^{n}\right.$ poly $\left.\left.(n)\right).\right]$

Current best for graph coloring:

$O^{*}\left(2^{n}\right)$ time

[Björklund-HusfeldtKoivisto 2009]

Every k -coloring partitions the vertices of G into k sets ($S_{1}, S_{2}, \ldots, S_{k}$), each of which is an independent set in G

Graph coloring

 (restated)
Question:

Can the vertices of G be partitioned into k sets

$\left(S_{1}, S_{2}, \ldots, S_{k}\right)$, each of which is an independent set?

Yes:

Yes:

Set Cover (Dense)

Input:

I. A family \mathcal{F} of subsets of $[n]=\{1,2, \ldots, n\}$
2. An integer k

Question:

Does there exist a k-tuple $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}\right) \in \mathcal{F}^{\mathrm{k}}$ such that $S_{1} \cup S_{2} \cup \ldots \cup S_{k}=[n]$?

Note:
To solve graph coloring, let \mathcal{F} consist of the independent sets of G - we have $|\mathcal{F}| \leq 2^{n}$

\#Subset Cover (Dense)

Input:

I. A family \mathcal{F} of subsets of $[n]=\{1,2, \ldots, n\}$
2. An integer k

Output:

For each $Z \subseteq[n]$, the number $c_{k}(Z)$ of k-tuples
$\left(S_{1}, S_{2}, \ldots, S_{k}\right) \in \mathcal{F}^{k}$ such that $S_{1} \cup S_{2} \cup \ldots \cup S_{k}=Z$
Idea:
Assume $\mathrm{Ckl}_{-1}(\mathrm{Z})$ is available for each $\mathrm{Z} \subseteq[\mathrm{n}]$

- using this data, compute $c_{k}(Z)$ for each $Z \subseteq[n]$

The union product

- Identify subsets of [n] with binary strings in $\{0,1\}^{\mathrm{n}}$
- Let R be a ring (e.g. the integers)
- Let $f:\{0, I\}^{n} \rightarrow R$ and $g:\{0, I\}^{n} \rightarrow R$
- Define the union product fug: $\{0, I\}^{n} \rightarrow R$ for all $Z \subseteq[n]$ by

$$
f \cup g(Z)=\sum_{X, Y \in\{0, I\}^{n}: X \cup Y=Z} f(X) g(Y)
$$

To solve \#Subset Cover:

1) Let f be an indicator function for $\mathcal{F} \subseteq\{0, \mathrm{I}\}^{\mathrm{n}}$
2) Then $c_{1}=f$, and $c_{k}=c_{k-1} \cup f$ for $k=2,3, \ldots$

- Given $f:\{0, I\}^{n} \rightarrow R$ and $g:\{0, I\}^{n} \rightarrow R$ as input, the union product $f \cup g:\{0, I\}^{n} \rightarrow R$ can be computed in $\mathrm{O}\left(2^{n} n\right)$ operations in R [Kennes I992, Yates 1937]
- \#Subset Cover can be solved in time $O^{*}\left(2^{n}\right)$ \#Subset Partition can be solved in time $\mathrm{O}^{*}\left(2^{n}\right)$ [Björklund-Husfeldt-Koivisto 2009]
- \#Graph Coloring can be solved in time $\mathrm{O}^{*}\left(2^{n}\right)$ [Björklund-Husfeldt-Koivisto 2009]

The proof in more detail

Main result

- Let (L, \leq) be a lattice with v elements, n of which are nonzero and join-irreducible
- Then, there exist arithmetic circuits of size $O(v n)$ both for the zeta transform on L and for the Möbius transform on L
- (The claim holds also if join-irreducible is replaced with meet-irreducible)

Motivation: Many combinatorially useful lattices have $\mathrm{n}=\mathrm{O}$ (polylog v)

Proof outline

- Let (L, \leq) be a lattice with v elements, and let $N \subseteq L$ be the n nonzero join-irreducibles
- Denote by $\mathcal{P}(\mathrm{N})$ the set of all subsets of N
- Step I (basic lattice theory):

Embed (L, \leq) into ($\mathcal{P}(\mathrm{N}), \subseteq$) via the "spectrum map" S

- Step 2 (basic lattice theory): Because the image $\mathcal{F}=S(\mathrm{~L})$ is intersection-closed in $\mathcal{P}(\mathrm{N})$, there is a unique closure operator on $\mathcal{P}(\mathrm{N})$ with image \mathcal{F}
- Step 3 (novel circuits for n - or u-closed set families): Construct circuits for the zeta \& Möbius transforms on (\mathcal{F}, \subseteq) by taking closure of ordered walks on $(\mathcal{P}(\mathrm{N}), \subseteq)$
- Define the spectrum map $S: \mathrm{L} \rightarrow \mathcal{P}(\mathrm{N})$ for all $\mathrm{x} \in \mathrm{L}$ by

$$
S(x)=\{i \in N: i \leq x\}
$$

- a) $x=\vee S(x)$ for all $x \in L$
- b) $x \leq y$ iff $S(x) \subseteq S(y)$ for all $x, y \in L$
- c) $S(\mathrm{x} \wedge \mathrm{y})=S(\mathrm{x}) \cap S(\mathrm{y})$ for all $x, y \in L$

- S is an order-isomorphism from (L, \leq) to $(S(\mathrm{~L}), \subseteq)$
- The image $\mathcal{F}=S(\mathrm{~L})$ is intersection-closed: $\mathrm{N} \in \mathcal{F}$ and for all $\mathrm{A}, \mathrm{B} \in \mathcal{F}$ it holds that $\mathrm{A} \cap \mathrm{B} \in \mathcal{F}$
- A closure operator on $(\mathcal{P}(\mathrm{N}), \subseteq)$ is a map $\perp: \mathcal{P}(\mathrm{N}) \rightarrow \mathcal{P}(\mathrm{N})$ such that for all $A, B \subseteq N$ it holds that 1) $A \subseteq \perp(A)$,

2) $A \subseteq B$ implies $\perp(A) \subseteq \perp(B)$, and 3) $\perp(A)=\perp(\perp(A))$

- The image $\perp(\mathcal{P}(\mathrm{N}))$ of a closure operator is intersection-closed
- Conversely, every intersection-closed family $\mathcal{F} \subseteq \mathcal{P}(\mathrm{N})$ defines a unique closure operator \perp whose image is \mathcal{F}

Construction (I/2)

- Let $\mathcal{F} \subseteq\{0, \mathrm{I}\}^{\mathrm{n}}$ be intersection-closed
- Key ideas:
- Imitate Yates's construction on $\{0,1\}^{n}$
- "Project" the construction using $\perp:\{0, I\}^{n} \rightarrow \mathcal{F}$
- Let $x, y \in \mathcal{F}$ with $x \subseteq y$ and let

$$
x=w(0) \subseteq w(1) \subseteq \ldots \subseteq w(n)=y
$$

be the ordered walk from x to y in $\{0, I\}^{n}$

- Then, the "projection"

$$
x=\perp(w(0)) \subseteq \perp(w(1)) \subseteq \ldots \subseteq \perp(w(n))=y
$$

is a walk from x to y in \mathcal{F}

Construction (2/2)

- An analysis of the projected walks gives a recurrence on \mathcal{F} that can be evaluated in n steps $i=I, 2, \ldots, n$ analogously to Yates's circuit
- Circuit for the Möbius transform on (\mathcal{F}, \subseteq)
- The recurrence for the zeta transform on (\mathcal{F}, \subseteq)
can be inverted by proceeding in order of increasing size through the sets in \mathcal{F}
- Dual result (for a union-closed family \mathcal{F}):
- Elementwise complement of \mathcal{F} is intersection-closed
-Traverse the walk from x to y with $x \subseteq y$ in reverse order from y to x

Summary \& Further work

- Main result:

There exist arithmetic circuits of size $\mathrm{O}(\mathrm{vn})$ for the zeta \& Möbius transforms on (L, \leq) with v elements and n nonzero join-irreducibles

- Can we go faster?
-Are there smaller circuits?
- Is there a family of lattices L that does not admit (monotone) circuits of size $O(e)$, where e is the number of edges in the diagram of L ?
- Further parallels between Möbius inversion and Fourier analysis?

