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17th bit of the input?
oo

It’s 0
//

What about 41st?
oo

It’s 1
//

Query Complexity = Number of queries in the worst case

■ Useful if input queries are very expensive
■ We can prove lower bounds for this model
■ May lead to new insights
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■ AND-OR tree evaluation (Farhi et al., 2007; Ambainis et al., 2007)
■ Span programs = Dual of general adversary bound (Reichardt et al.,

2009)

Quantum query complexity of
f : [m]n ⊇ D → {0, 1}

■ General (negative-weight) adversary bound (Høyer et al., 2006)
■ Adversary bound (Ambainis, 2000)
■ Polynomial bound (Beals et al., 1998)
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Quantum
query

complexity
=∗ Optimum of a

semidefinite
program

How can this be applied?

∗Up to a constant factor
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maximize ‖Γ‖
subject to ‖Γ ◦∆j‖ ≤ 1 for all j ∈ [n].

Here: Γ is an f−1(1)× f−1(0)-matrix with real entries, and

∆j =

{

1, xj 6= yj ;

0, otherwise.
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maximize ‖Γ‖
subject to ‖Γ ◦∆j‖ ≤ 1 for all j ∈ [n].

■ Has been used in assumption that all entries of Γ are non-negative
(original formulation).

■ That has handy combinatorial variants.
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maximize ‖Γ‖
subject to ‖Γ ◦∆j‖ ≤ 1 for all j ∈ [n].

Theorem: Suppose X ⊆ f−1(1), Y ⊆ f−1(0), and a relation ∼ between X
and Y are such that

■ for each x ∈ X, there are at least m different y ∈ Y such that x ∼ y;
■ for each y ∈ Y , there are at least m′ different x ∈ X such that x ∼ y;
■ for each x ∈ X and j ∈ [n], there are at most ℓ different y ∈ Y such that

x ∼ y and xj 6= yj ;
■ for each y ∈ Y and j ∈ [n], there are at most ℓ′ different x ∈ X such that

x ∼ y and xj 6= yj .

Then, any quantum algorithm computing f uses Ω

(√
mm′

ℓℓ′

)

queries.
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maximize ‖Γ‖
subject to ‖Γ ◦∆j‖ ≤ 1 for all j ∈ [n];

■ This special case is known to be non-tight.
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minimize max
x∈D

∑

j∈[n]
Xj [[x, x]]

subject to
∑

j : xj 6=yj
Xj [[x, y]] = 1 whenever f(x) 6= f(y);

Xj � 0 for all j ∈ [n].

Here: Xj are D ×D-matrices with real entries.

■ Has almost never been used.
■ An exception is formulae evaluation:

Solving a small instance on a computer, applying tight composition
results.
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Definition: For a function f : [m]n ⊇ D → {0, 1} and input x ∈ f−1(1), a
1-certificate is a subset S ⊆ [n] such that

(∀j ∈ S : yj = xj) =⇒ f(y) = 1 for all y ∈ D.

1-certificate complexity of x is the smallest size of a 1-certificate;
1-certificate complexity of f is the maximum of 1-certificate complexities over
x ∈ f−1(1).

Example: For OR function:

■ any j ∈ [n] such that xj = 1 forms a 1-certificate
■ 1-certificate complexity of OR is 1
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■ Model for constructing feasible solutions for Dual Adversary bound,
hence, quantum query algorithms.
By Belovs, arXiv:1105.4024, STOC 2012.

■ Randomized zero-error procedure for loading values of variables.
■ For each positive input: its own procedure to load a 1-certificate.
■ Complexity: from interplay between different inputs.

For OR function:
(x is a positive input, and {a} is a 1-certificate)

I: Load a
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I: Load a

■ Define the set of transitions as union over all inputs:

I: From ∅ to {j} for all j ∈ [n];
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Theorem: The complexity of the learning graph is O
(∑

i Li

√
Ti

)
where the

sum is over stages and

Length Li: Number of variables loaded on the stage

Speciality Ti:

(

Number of transitions
on the stage

)

/

(

Number of ones
used for one input

)

Transitions Used Length Speciality

I: From ∅ to {j} j = a 1 n

Total complexity: O(
√
n).



Element distinctness

Query complexity Adversary Bound Learning graphs Element distinctness Various Problems



Formulation
Query complexity Adversary Bound Learning graphs Element distinctness Various Problems

19 / 51

Given x1, . . . , xn ∈ [m], detect whether there exist a 6= b such that xa = xb.
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Given x1, . . . , xn ∈ [m], detect whether there exist a 6= b such that xa = xb.

Complexity: Θ(n2/3)

■ Algorithm by Ambainis (2003).
Apply quantum walk on the Johnson graph of r-subsets of [n], with
accepting vertices containing equal elements.

■ Lower bound by Aaronson and Shi (2001).
Using polynomial method.
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I: Load r elements not from {a, b}
II: Load a
III: Load b

■ Set of transitions for all inputs:

I: From ∅ to S of r elements;
II: From S to S ∪ {j} for |S| = r and j /∈ S;
III: From S to S ∪ {j} for |S| = r + 1 and j /∈ S.
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Length Li: Number of variables loaded on the stage

Speciality Ti:

(

Number of transitions
on the stage

)

/

(

Number of ones
used for one input

)

Transitions Used Length Speciality

I: From ∅ to S of r elements a, b /∈ S r O(1)
II: From S to S ∪ {j} for |S| = r

and j /∈ S
a, b /∈ S, j = a 1 O(n)

III: From S to S ∪ {j} for |S| =
r + 1 and j /∈ S

a ∈ S, j = b 1 O(n2/r)
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Transitions Used Length Speciality

I: From ∅ to S of r elements a, b /∈ S r O(1)
II: From S to S ∪ {j} for |S| = r

and j /∈ S
a, b /∈ S, j = a 1 O(n)

III: From S to S ∪ {j} for |S| =
r + 1 and j /∈ S

a ∈ S, j = b 1 O(n2/r)

We get complexity:

O

(
∑

i

Li

√

Ti

)

= O(r +
√
n+ n/

√
r) = O(n2/3)

when r = n2/3.



Where does a man hide a leaf? In the forest.
But what does he do if there is no forest?..
He grows a forest to hide it in.

Gilbert Keith Chesterton
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Näıve learning graph Optimal learning graph

I: Load a
II: Load b

I: Load r elements not from {a, b}
II: Load a
III: Load b

Complexity: O(n) Complexity: O(n2/3).

■ Before loading b, a is hidden among the r loaded elements.
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A similar algorithm solves any problem with 1-certificate complexity k = O(1):

I: Load r elements not from {a1, a2, . . . , ak}
II.1: Load a1

...
II.k: Load ak

■ Complexity is O(nk/(k+1)).
■ Corresponds to quantum walk on the Johnson graph.
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The k-sum problem:

Given x1, . . . , xn ∈ [m], detect whether there exist pairwise distinct
a1, . . . , ak such that xa1 + xa2 + · · ·+ xak is divisible by m.

■ Belovs and Špalek, arXiv:1206.6528

Lower bound of Ω(nk/(k+1)) using adversary method

■ Hence, quantum walk on the Johnson graph is optimal for this problem.

■ Due to certificate complexity barrier no adversary with non-negative
entries exist with bound ω(

√
n).

■ This lower bound has applications in quantum Merkle puzzles.
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The k-sum problem:

Given x1, . . . , xn ∈ [m], detect whether there exist pairwise distinct
a1, . . . , ak such that xa1 + xa2 + · · ·+ xak is divisible by m.

■ Given a (k − 1)-tuple of input variables, we have absolutely no idea
whether they form a part of a 1-certificate.
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The k-sum problem:

Given x1, . . . , xn ∈ [m], detect whether there exist pairwise distinct
a1, . . . , ak such that xa1 + xa2 + · · ·+ xak is divisible by m.

■ Given a (k − 1)-tuple of input variables, we have absolutely no idea
whether they form a part of a 1-certificate.

■ There is no structure between the values of different variables.

What happens if we introduce structure?
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Given xi,j ∈ {0, 1}, with 1 ≤ i < j ≤ n, detect whether there exist
1 ≤ a < b < c ≤ n such that

xa,b = xa,c = xb,c = 1.

NB: the number of input variables is Θ(n2).

b

a

lllllll c

RRRRRRR
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Given xi,j ∈ {0, 1}, with 1 ≤ i < j ≤ n, detect whether there exist
1 ≤ a < b < c ≤ n such that

xa,b = xa,c = xb,c = 1.

■ There is structure between the variables.
■ Quantum walk on the Johnson graph would give: O(n3/2).
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Given xi,j ∈ {0, 1}, with 1 ≤ i < j ≤ n, detect whether there exist
1 ≤ a < b < c ≤ n such that

xa,b = xa,c = xb,c = 1.

■ O(n13/10) query algorithm by Magniez, Santha, Szegedy (2005) using two
quantum walks on the Johnson graph: one inside another.

■ Ω(n) lower bound, trivial by reduction to Grover.
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Given xi,j ∈ {0, 1}, with 1 ≤ i < j ≤ n, detect whether there exist
1 ≤ a < b < c ≤ n such that

xa,b = xa,c = xb,c = 1.

■ O(n13/10) query algorithm by Magniez, Santha, Szegedy (2005) using two
quantum walks on the Johnson graph: one inside another.

■ Ω(n) lower bound, trivial by reduction to Grover.

■ O(n35/27) query algorithm by Belovs, arXiv:1105.4024, STOC 2012.
■ O(n9/7) query algorithm by Lee, Magniez and Santha, to appear in SODA

2013.
■ Can be generalized to other subgraph containment problems.
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(/).*-+, c(/).*-+, (/).*-+, (/).*-+,

a(/).*-+, b(/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+, (/).*-+,

In the beginning nothing is loaded.

Continue as follows...
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(/).*-+, c(/).*-+, (/).*-+, (/).*-+,

a(/).*-+, b(/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+, (/).*-+,

(/).*-+, (/).*-+, (/).*-+, (/).*-+,

OOO
OOO

OOO

//
//
//
//
/

??
??

??
??

??
?? ooooooooo

??
??

?

OOO
OOO

OOO

I: Take disjoint A,B ⊆ [n] \ {a, b, c} of sizes n4/7 and n5/7, and load all
edges between A and B

Length: |A||B| = n9/7

Speciality: 1

Complexity: n9/7
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(/).*-+, (/).*-+, (/).*-+, (/).*-+,
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//
//
//
//
/
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??
??

??
?? ooooooooo

??
??

?

OOO
OOO

OOO

OOO
OOO

OOO

??
??

??
??

??
??

**
**
**
**
**
**
*

44
44

44
44

44
44

44
4

II: Add a to A and load all edges between a and B

Length: |B| = n5/7

Speciality: n

Complexity: n17/14
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//
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/
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??

??
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44
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��
��
��
��
��
��

III: Add b to B and load all edges between b and A

Length: |A| = n4/7

Speciality: n2/|A| = n10/7

Complexity: n9/7
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IV: Load ℓ = n3/7 edges connecting c to vertices in B, but b

Length: ℓ = n3/7

Speciality: n3/(|A||B|) = n3/(n4/7n5/7) = n12/7

Complexity: n9/7
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V: Load edge bc

Length: 1

Speciality: n3/|A| = n3/n4/7 = n17/7

Complexity: n17/14
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VI: Load edge ac

Length: 1

Speciality: n3/ℓ = n18/7

Complexity: n9/7
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I: Take disjoint A,B ⊆ [n] \ {a, b, c} of sizes n4/7 and n5/7 and
load all edges between A and B

II: Add a to A and load all edges between a and B
III: Add b to B and load all edges between b and A

IV: Load ℓ = n3/7 edges connecting c to elements in B, but b
V: Load edge bc
VI: Load edge ac

Stage I II III IV V VI

Length n9/7 n5/7 n4/7 n3/7 1 1

Speciality 1 n n10/7 n12/7 n17/7 n18/7

Complexity n9/7 n17/14 n9/7 n9/7 n17/14 n9/7

Total complexity: O(n9/7).
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Given x1, . . . , xn ∈ [m], detect whether there exist a1, . . . , ak, all distinct,
such that

xa1 = xa2 = · · · = xak .

(If k = 2, this is element distinctness.)

■ This time: there is structure between the values of the variables.
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Given x1, . . . , xn ∈ [m], detect whether there exist a1, . . . , ak, all distinct,
such that

xa1 = xa2 = · · · = xak .

(If k = 2, this is element distinctness.)

■ O(nk/(k+1)) algorithm by Ambainis (2003)
Using quantum walk on the Johnson graph

■ Ω(n2/3) lower bound, by reduction to the Element Distinctness problem.
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Given x1, . . . , xn ∈ [m], detect whether there exist a1, . . . , ak, all distinct,
such that

xa1 = xa2 = · · · = xak .

(If k = 2, this is element distinctness.)

■ O(nk/(k+1)) algorithm by Ambainis (2003)
Using quantum walk on the Johnson graph

■ Ω(n2/3) lower bound, by reduction to the Element Distinctness problem.

■ O
(

n1−2k−2/(2k−1)
)

= o(n3/4) query algorithm by Belovs,

using more complex learning graphs
arXiv:1205.1534, to appear in FOCS 2012.
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Consider 3-distinctness:
The task is to load a triple {a, b, c} of equal elements.

I: Load r elements not from {a, b, c}
II.1: Load a
II.2: Load b
II.3: Load c

On step II.3, while loading c, a and b are hidden in the set S of loaded
variables:

S : 1 9 7 8 5 6 2 3 7 5 4 0 0 6
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In the previous algorithm, while loading c, a and b were hidden in S:

S : 1 9 7 8 5 6 2 3 7 5 4 0 0 6

We divide S into S1 and S2, for a and b, respectively:

S1

︷ ︸︸ ︷

1 9 7 8 5 6 2

S2

︷ ︸︸ ︷

3 7 5 4 0 0 6

Some elements of S2 just can’t be b. Their values are irrelevant.

S1

︷ ︸︸ ︷

1 9 7 8 5 6 2

S2

︷ ︸︸ ︷

* 7 5 * * * 6



Some modifications
Query complexity Adversary Bound Learning graphs Element distinctness Various Problems

46 / 51

Some elements of S2 just can’t be b. Their values are irrelevant.

S1

︷ ︸︸ ︷

1 9 7 8 5 6 2

S2

︷ ︸︸ ︷

* 7 5 * * * 6

The value of n boolean variables can be learned faster than in n queries, if
there is a bias between the number of zeros and ones.
Elements having a pair in S1 are much rarer than the ones that don’t. S2 can
be enlarged.

S1

︷ ︸︸ ︷

1 9 7 8 5 6 2

S2

︷ ︸︸ ︷

* * * * 7 * * 5 * * * 6 * * * * 1 * * * ...
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Let M = {a1, . . . , ak} be the set of equal elements.
I.1 Load a set S1 of r1 elements not from M .
I.2 Load a set S2 of r2 elements not from M , uncovering those

elements only that have a match in S1.
I.3 Load a set S3 of r3 elements not from M , uncovering those

elements only that have a match among the uncovered elements
of S2.

...
I.(k − 1) Load a set Sk−1 of rk−1 elements not from M , uncovering

those elements only that have a match among the uncovered
elements of Sk−2.

II.1 Load a1 and add it to S1.
...

II.(k − 1) Load ak−1 and add it to Sk−1.
II.k Load ak.
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Belovs and Reichardt (arXiv:1203.2603, ESA 2012), inspired by the paper
by A. Childs and R. Kothari.

Any fixed graph of the three following types can be detected in O(n)
quantum queries:

 '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$

 '!&"%#$

 '!&"%#$

 '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$
 '!&"%#$
vvv

 '!&"%#$
���

 '!&"%#$))) '!&"%#$HHH '!&"%#$
 '!&"%#$vv

v

 '!&"%#$�
��

 '!&"%#$
))
)

 '!&"%#$HH
H  '!&"%#$  '!&"%#$ '!&"%#$ '!&"%#$

NB: Improvement from almost O(n3/2) for large subgraphs.
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Belovs and Reichardt (arXiv:1203.2603, ESA 2012), inspired by the paper
by A. Childs and R. Kothari.

Any fixed graph of the three following types can be detected in O(n)
quantum queries:

 '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$

 '!&"%#$

 '!&"%#$

 '!&"%#$  '!&"%#$  '!&"%#$  '!&"%#$
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NB: Improvement from almost O(n3/2) for large subgraphs.

■ the algorithm can be implemented in Õ(n) time and O(log n) space.
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■ Learning graphs reduce to Adversary Upper Bound
■ They can mimic quantum walks on the Johnson graph
■ Learning graphs allow more control compared to previous quantum walks

used to construct algorithms
■ Analysis is combinatorial
■ No spectral analysis is required
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■ More adversary upper and lower bounds!

◆ Lower bound for collision and set equality problems
◆ Lower bound for k-distinctness. Is the algorithm tight?

■ Time-efficient implementation of other learning graphs.

◆ k-distinctness is more likely



Thank you!
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