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Outline of the talk

• Finite automata (DFA)
• Representation of automata with Boolean circuits
• BC-complexity
• Shannon effect for BC-complexity
• NFA, language operations
• Minimization

      
•

Shannon Effect for BC-complexity of Finite Automata
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Finite Automata

A finite automaton (DFA) 
consists of:

• Input tape
• Read-only head moving in only one direction
• On each step

  -Read input symbol
  -Change the state according to the transition function
  -Move the head

• If there are no more input symbols
        -If qQF – accept word
        -If q∉QF – reject word
•
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Finite Automata

A deterministic finite automaton (DFA) is a 
tuple A(Σ, Q, QF , δ, q0) where

• Σ is the input alphabet
• Q is the state space
• QFQ is the set of final states
• δ : Σ×Q→Q is the transition function
• q0Q is the start state

•
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Finite Automata

A deterministic finite automaton (DFA) is a 
tuple A(Σ, Q, QF , δ, q0) where

• Σ is the input alphabet
• Q is the state space
• QFQ is the set of final states
• δ : Σ×Q→Q is the transition function
• q0Q is the start state

•Complexity measures of finite automata

● State complexity Cs(A)=|Q|
● ?
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What is the most complex automaton that 
we can build (model on a computer)?

Motivation
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What is the most complex automaton that 
we can build (model on a computer)?

● 210 states?

● 2100 states?

● 21000 states?

Motivation
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1. Automaton A1 accepts language L1 of words in a 
binary alphabet Σ={0, 1} for which 1000th digit from 

the end is “1”.
      xL1 ⇔ x|x|-999=1

Automata with 21000 states
Motivation
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2. Automaton A2 - a “random” 21000 state automaton 
in a binary input alphabet.

Automata with 21000 states
Motivation
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2. Automaton A2 - a “random” 21000 state automaton 
in a binary input alphabet.

● State complexity CS(A2)=21000

● Implementation – a table with 21001 rows

Automata with 21000 states
Motivation
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Problem
How to show that the “random” automaton A2 is 
more complex than A1 if they have same state 
complexity?

Motivation
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Solution!
 - Encode the state space into state
   register (bit vector)

Problem
How to show that the “random” automaton A2 is 
more complex than A1 if they have same state 
complexity?

Motivation
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A(Σ, Q, QF, δ, q0)

Solution!

 - Measure not the complexity of the state space,

 - Encode the state space into state
   register (bit vector)
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Representation of an automaton with a 
Boolean circuit

Representation of an automaton
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Representation of an automaton with a 
Boolean circuit

● State space Q  state register (b→ Q≥log|Q| state bits)

● Transition function δ : Σ×Q→Q   Boolean circuit:→
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● Outputs : state bits
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Representation of an automaton with a 
Boolean circuit

● State space Q  state register (b→ Q≥log|Q| state bits)

● Transition function δ : Σ×Q→Q   Boolean circuit:→
● Inputs : input bits and state bits
● Outputs : state bits

● Set of final states QFQ  a Boolean circuit for the →
characteristic function of the set QF:
● Inputs : state bits
● Outputs : one bit (accept/reject)

Representation of an automaton

● Input alphabet Σ  input bits (b→ Σ≥log|Σ| state bits)

Encode:

Represent:
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Representation of an automaton with 
two Boolean circuits:

≥log|Q| state bits            ≥log|Σ| input bits

Representation of an automaton
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Properties of circuit representation

Representation of an automaton
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Representation of an automaton

● Each automaton can have infinitely many encodings
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Properties of circuit representation

Representation of an automaton

● Each encoding can have infinitely many representations
● (Number of state bits) bQ≥log2(|Q|)

● Each automaton can have infinitely many encodings

● Two automata may have the same representation only if 
they are equivalent.



362014.10.04 of 110

BC-complexity

DFA A(Σ, Q, QF , δ, q0) is represented by a pair of circuits 
(F, G)
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BC-complexity of a representation

CBC((F, G)) = C(F)+C(G)+bQ

BC-complexity

CBC(A)=min{CBC(F, G): (F, G) represents A}

BC-complexity of an automaton

BC-complexity of a regular language
CBC(R)=min{CBC(A): A recognizes R}

DFA A(Σ, Q, QF , δ, q0) is represented by a pair of circuits 
(F, G)
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Example 1

Automaton A1 accepts language L1 of words for 
which the n -th digit from the end is “1”:

● Σ={0, 1}
● Cs(A1

n)=|Q|=2n

BC-complexity
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Example 1

Automaton A1 accepts language L1 of words for 
which the n -th digit from the end is “1”:

● Σ={0, 1}
● Cs(A1

n)=|Q|=2n

is represented 
by circuits:

● CBC(A)=0 + 0 + n = n

BC-complexity



442014.10.04 of 110

Example 2

A finite automaton A2
n, that accepts input iff the Shannon 

function of the last n input symbols is “1”:
● Σ={0, 1}
● Cs(A2

n)=|Q|=2n

BC-complexity
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Example 2

A finite automaton A2
n, that accepts input iff the Shannon 

function of the last n input symbols is “1”:
● Σ={0, 1}
● Cs(A2

n)=|Q|=2n

● CBC((F, G)) ≥ 0 + 2n/n + n ≥ 2n/n

BC-complexity
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Example 2

A finite automaton A2
n, that accepts input iff the Shannon 

function of the last n input symbols is “1”:
● Σ={0, 1}
● Cs(A2

n)=|Q|=2n

● CBC((F, G)) ≥ 0 + 2n/n + n ≥ 2n/n

BC-complexity

● CBC(A2
n)≥2n/n2

(proof omitted)
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Upper and lower bounds for BC-complexity

BC-complexity
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Upper and lower bounds for BC-complexity

● CBC(F, G) = C(F) + C(G) + bQ
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Upper and lower bounds for BC-complexity

● CBC(F, G) = C(F) + C(G) + bQ
● |Σ|=k and |Q|=2n :

CBC(A)  k2n +2n/n+n k2nUpper bound (simple)

For almost all A

BC-complexity

CBC(A)  (k-1)2n

n ≤ CBC(A) Lower bound:

CBC(A)  (k-1)2nUpper bound
Change the encoding (reorder states)

Counting argument

x  f(n)  x>f(n)(1-o(1))
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● CBC(F, G) = C(F) + C(G) + bQ
● |Σ|=k and |Q|=2n :

BC-complexity

“Shannon effect” for the BC-complexity of DFA.
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● CBC(F, G) = C(F) + C(G) + bQ
● |Σ|=k and |Q|=2n :

CBC(A) ≈ (k-1)2nFor almost all A

BC-complexity

“Shannon effect” for the BC-complexity of DFA.
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● CBC(F, G) = C(F) + C(G) + bQ
● |Σ|=k and |Q|=2n :

● CBC(A2
n) ≥ 2n/n2

● CBC(A1
n) = n

CBC(A) ≈ (k-1)2nFor almost all A

BC-complexity

“Shannon effect” for the BC-complexity of DFA.
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Some special cases

BC-complexity

● Nondeterministic automata
● Language operations
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Nondeterministic automata (NFA)

BC-complexity

● NFA with n states  DFA → A with 2n states.
● CBC(A)  (k-1)2n

We can do much better!

● Encode one state of NFA as one state bit.
● s1' = 1  (x=1 & (s2=1 V s3=1)) V (x=0 & (s2=1 V s4=1))

Much simpler than a general function on n arguments!
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Nondeterministic automata (NFA)

BC-complexity

● NFA with n states  DFA → A with 2n states.
● CBC(A)  (k-1)2n (from the upper bound)
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Nondeterministic automata (NFA)

BC-complexity

● NFA with n states  DFA → A with 2n states.
● CBC(A)  (k-1)2n (from the upper bound)
● CBC(A) < kn2       (simple construction)
● CBC(A)  kn2/logn (nearly optimal construction)

For almost all A CBC(A)  (k-1)n2/2logn

Counting argument

No Shannon effect right now for NFA (but coming close)
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Upper bounds of BC-complexity for 
Language operations

BC-complexity

● Given two languages L1 and L2 with state complexities m 
and n and BC-complexities a and b.

Operation State comp. BC-complexity
L1 ∪ L2

mn a+b+1

L1 ∩ L2
mn a+b+1

Σ*-L1 m a+1

L1
R 2m 2m(m+1)

L1L2 (2m-1)2n-1 2a+2n(n+1)

L1* 2m-1+2m-2 2m(m+1)
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BC-complexity
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A computer

BC-complexity

● Is computer a Turing machine?

On each step it:
● reads input (may be nothing),
● transforms its registers and memory according to some 
simple function,

● has state space with around 2240 states (240 state bits)

● Is computer a finite automaton?
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A computer

BC-complexity

● Is computer a Turing machine?

On each step it:
● reads input (may be nothing),
● transforms its registers and memory according to some 
simple function,

● has state space with around 2240 states (240 state bits)

● Is computer (an efficient) representation of a finite 
automaton?

● Is computer a finite automaton?
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Minimization

Minimization
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respect to the number of states) automaton M(A)
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● For every automaton A one can find its minimal (with the 
respect to the number of states) automaton M(A)

Minimization

● Is the BC-complexity of M(A) also minimal?
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Minimization

● For every automaton A one can find its minimal (with the 
respect to the number of states) automaton M(A)

Minimization

● Is the BC-complexity of M(A) also minimal?

● Can it be that for some automaton A:
CBC(M(A)) ≫ CBC(A) ?
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Minimization

Theorem:
If there exists a polynomial p(x) such that
CBC(M(A))<p(CBC(A))
for all automata A then PSPACE ⊆ P/Poly

Minimization
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Minimization

Theorem:
If there exists a polynomial p(x) such that
CBC(M(A))<p(CBC(A))
for all automata A then PSPACE ⊆ P/Poly

For every n we can build an automaton Bn with
● Poly(n) state bits (2Poly(n) states)
● CBC(Bn)=Poly(n)
● CBC(M(Bn))∉Poly(n)

Minimization
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Kolmogorov complexity of automata

Kolmogorov complexity
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There is a constant c such that
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for all automata A.

● CK(A): efficient description of A
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Kolmogorov complexity of automata
CK(A)=minimal size of a program that outputs state 
transition table of automaton A

Kolmogorov complexity

There is a constant c such that
CK(M(A)) ≤ CK(A)+c
for all automata A.
If there exists a polynomial p(x) such that
CBC(M(A))<p(CBC(A))
for all automata A then PSPACE ⊆ P/Poly

● CK(A): efficient description of A
● CBC(A): efficient execution of A
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“What is the most complex automaton that we 
can build (or model on a computer)”?

Conclusions
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Conclusions

● We can model any automaton with a reasonable 
BC-complexity

● Many “naturally generated” DFAs have large state 
complexity but low BC complexity

● Sometimes minimizing the number of states leads to 
(a large) increase in BC-complexity

“What is the most complex automaton that we 
can build (or model on a computer)”?

Conclusions
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for achieving minimal BC-complexity.
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(log(|Q|) number of state bits is optimal?

Minimizing the number of states is not always optimal 
for achieving minimal BC-complexity.
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Open questions

Conclusions

● Is it always true that representation with minimal 
(log(|Q|) number of state bits is optimal?

Minimizing the number of states is not always optimal 
for achieving minimal BC-complexity.

● Can the upper and lower bounds for NFA be 
improved?

● How to estimate the lower bounds for language 
operations?
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Open questions

Conclusions

yi = xj1 V xj2 V … V xjk

● Simple contruction needs on average n2/2 gates
● More efficient contruction needs asymptotically n2/log n gates

● Lower bounds is n2/2logn gates
● Can you do better?
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Thank you!
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