Shannon Effect for BC-complexity of Finite Automata

Māris Valdats

University of Latvia

2014.10.04

Shannon Effect for BC-complexity of Finite Automata

Outline of the talk

- Finite automata (DFA)
- Representation of automata with Boolean circuits
- BC-complexity
- Shannon effect for BC-complexity
- NFA, language operations
- Minimization

Finite Automata

A finite automaton (DFA)

 consists of:- Input tape
- Read-only head moving in only one direction
- On each step
-Read input symbol
-Change the state according to the transition function
-Move the head
- If there are no more input symbols
-If $q \in Q_{F}$ - accept word
-If $q \notin \mathrm{Q}_{\mathrm{F}}$ - reject word

Finite Automata

A finite automaton (DFA)

 consists of:- Input tape
- Read-only head moving in only one direction
- On each step
-Read input symbol
-Change the state according to the transition function
-Move the head
- If there are no more input symbols
-If $q \in Q_{F}$ - accept word
-If $q \notin \mathrm{Q}_{\mathrm{F}}$ - reject word

Finite Automata

A deterministic finite automaton (DFA) is a

 tuple $A\left(\Sigma, Q_{,} Q_{F}, \delta, q_{0}\right)$ where- Σ is the input alphabet
- Q is the state space
- $\mathrm{Q}_{\mathrm{F}} \subseteq \mathrm{Q}$ is the set of final states
- $\delta: \Sigma \times \mathrm{Q} \rightarrow \mathrm{Q}$ is the transition function
- $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state

Finite Automata

A deterministic finite automaton (DFA) is a

 tuple $A\left(\Sigma, Q_{,} Q_{F}, \delta, q_{0}\right)$ where- Σ is the input alphabet
- Q is the state space
- $\mathrm{Q}_{\mathrm{F}} \subseteq \mathrm{Q}$ is the set of final states
- $\delta: \Sigma \times \mathrm{Q} \rightarrow \mathrm{Q}$ is the transition function
- $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state

Complexity measures of finite automata

Finite Automata

A deterministic finite automaton (DFA) is a

 tuple $A\left(\Sigma, Q_{,} Q_{F}, \delta, q_{0}\right)$ where- Σ is the input alphabet
- Q is the state space
- $\mathrm{Q}_{\mathrm{F}} \subseteq \mathrm{Q}$ is the set of final states
- $\delta: \Sigma \times \mathrm{Q} \rightarrow \mathrm{Q}$ is the transition function
- $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state

Complexity measures of finite automata

- State complexity $\mathrm{C}_{\mathrm{s}}(\mathrm{A})=|\mathrm{Q}|$

Finite Automata

A deterministic finite automaton (DFA) is a

 tuple $A\left(\Sigma, Q_{,} Q_{F}, \delta, q_{0}\right)$ where- Σ is the input alphabet
- Q is the state space
- $\mathrm{Q}_{\mathrm{F}} \subseteq \mathrm{Q}$ is the set of final states
- $\delta: \Sigma \times \mathrm{Q} \rightarrow \mathrm{Q}$ is the transition function
- $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state

Complexity measures of finite automata

- State complexity $\mathrm{C}_{\mathrm{s}}(\mathrm{A})=|\mathrm{Q}|$
-?

Motivation

What is the most complex automaton that we can build (model on a computer)?

What is the most complex automaton that we can build (model on a computer)?

- 2^{10} states?
- 2^{100} states?
- 2^{1000} states?

Motivation

Automata with $\mathbf{2}^{\mathbf{1 0 0 0}}$ states

1. Automaton A_{1} accepts language L_{1} of words in a binary alphabet $\Sigma=\{0,1\}$ for which 1000th digit from the end is " 1 ".
$\mathbf{x} \in \mathrm{L}_{1} \Leftrightarrow \mathrm{X}_{|\mathrm{x}|-999}=1$

Motivation

Automata with $\mathbf{2}^{\mathbf{1 0 0 0}}$ states

1. Automaton A_{1} accepts language L_{1} of words in a binary alphabet $\Sigma=\{0,1\}$ for which 1000th digit from the end is " 1 ".

$$
\mathbf{x} \in \mathrm{L}_{1} \Leftrightarrow \mathrm{X}_{|\mathrm{x}|-999}=1
$$

- State complexity $\mathrm{C}_{\mathrm{s}}\left(\mathrm{A}_{1}\right)=2^{1000}$
- Implementation - use 1000 bit LIFO register

Motivation

Automata with $\mathbf{2}^{\mathbf{1 0 0 0}}$ states

1. Automaton A_{1} accepts language L_{1} of words in a binary alphabet $\Sigma=\{0,1\}$ for which 1000th digit from the end is " 1 ".

$$
\mathbf{x} \in \mathrm{L}_{1} \Leftrightarrow \mathrm{X}_{|\mathrm{x}|-999}=1
$$

- State complexity $\mathrm{C}_{\mathrm{s}}\left(\mathrm{A}_{1}\right)=2^{1000}$
- Implementation - use 1000 bit LIFO register

Motivation

Automata with $\mathbf{2}^{\mathbf{1 0 0 0}}$ states

2. Automaton A_{2} - a "random" 2^{1000} state automaton in a binary input alphabet.

Motivation

Automata with $\mathbf{2}^{\mathbf{1 0 0 0}}$ states

2. Automaton A_{2} - a "random" 2^{1000} state automaton in a binary input alphabet.

- State complexity $\mathrm{C}_{5}\left(\mathrm{~A}_{2}\right)=2^{1000}$
- Implementation - a table with 2^{1001} rows

Motivation

Problem

How to show that the "random" automaton A_{2} is more complex than A_{1} if they have same state complexity?

Motivation

Problem

How to show that the "random" automaton A_{2} is more complex than A_{1} if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)

Motivation

Problem

How to show that the "random" automaton A_{2} is more complex than A_{1} if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space,

$$
A\left(\Sigma, Q, Q_{F}, \delta, q_{0}\right)
$$

Motivation

Problem

How to show that the "random" automaton A_{2} is more complex than A_{1} if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space,

$$
A\left(\Sigma, Q Q_{\mathrm{F}}, \delta, q_{0}\right)
$$

Motivation

Problem

How to show that the "random" automaton A_{2} is more complex than A_{1} if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space, but that of the transition function

$$
A\left(\Sigma, Q Q_{1} Q_{F}, \delta, q_{0}\right)
$$

Motivation

Problem

How to show that the "random" automaton A_{2} is more complex than A_{1} if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space, but that of the transition function

$$
A\left(\Sigma, Q, Q_{F}, \delta, q_{0}\right)
$$

Motivation

Problem

How to show that the "random" automaton A_{2} is more complex than A_{1} if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space, but that of the transition function

$$
A\left(\Sigma, Q, Q_{F}, \delta, q_{0}\right)
$$

Representation of an automaton

Representation of an automaton with a Boolean circuit

Representation of an automaton

Representation of an automaton with a Boolean circuit

Encode:

Representation of an automaton

Representation of an automaton with a Boolean circuit

Encode:

- State space $\mathrm{Q} \rightarrow$ state register $\left(\mathrm{b}_{\mathrm{Q}} \geq \log |\mathrm{Q}|\right.$ state bits)

Representation of an automaton

Representation of an automaton with a Boolean circuit

Encode:

- State space $\mathrm{Q} \rightarrow$ state register ($\mathrm{b}_{\mathrm{Q}} \geq \log |\mathrm{Q}|$ state bits)
- Input alphabet $\Sigma \rightarrow$ input bits $\left(\mathrm{b}_{\Sigma} \geq \log |\Sigma|\right.$ state bits)

Representation of an automaton

Representation of an automaton with a Boolean circuit

Encode:

- State space $\mathrm{Q} \rightarrow$ state register ($\mathrm{b}_{\mathrm{Q}} \geq \log |\mathrm{Q}|$ state bits)
- Input alphabet $\Sigma \rightarrow$ input bits ($\mathrm{b}_{\Sigma} \geq \log |\Sigma|$ state bits) Represent:

Representation of an automaton

Representation of an automaton with a Boolean circuit

Encode:

- State space $\mathrm{Q} \rightarrow$ state register ($\mathrm{b}_{\mathrm{Q}} \geq \log |\mathrm{Q}|$ state bits)
- Input alphabet $\Sigma \rightarrow$ input bits $\left(\mathrm{b}_{\Sigma} \geq \log |\Sigma|\right.$ state bits) Represent:
- Transition function $\delta: \Sigma \times \mathrm{Q} \rightarrow \mathrm{Q} \rightarrow$ Boolean circuit:
- Inputs : input bits and state bits
- Outputs : state bits

Representation of an automaton

Representation of an automaton with a Boolean circuit

Encode:

- State space $\mathrm{Q} \rightarrow$ state register $\left(\mathrm{b}_{\mathrm{Q}} \geq \log |\mathrm{Q}|\right.$ state bits)
- Input alphabet $\Sigma \rightarrow$ input bits $\left(\mathrm{b}_{\Sigma} \geq \log |\Sigma|\right.$ state bits)

Represent:

-Transition function $\delta: \Sigma \times \mathrm{Q} \rightarrow \mathrm{Q} \rightarrow$ Boolean circuit:

- Inputs : input bits and state bits
- Outputs : state bits
- Set of final states $\mathrm{Q}_{\mathrm{F}} \subseteq \mathrm{Q} \rightarrow$ a Boolean circuit for the characteristic function of the set Q_{F} :
- Inputs : state bits
- Outputs : one bit (accept/reject)

Representation of an automaton

Representation of an automaton with two Boolean circuits:

$\geq \log |\mathrm{Q}|$ state bits
$\geq \log |\Sigma|$ input bits

Representation of an automaton

Properties of circuit representation

Representation of an automaton

Properties of circuit representation

- Each automaton can have infinitely many encodings

Representation of an automaton

Properties of circuit representation

- Each automaton can have infinitely many encodings
- Each encoding can have infinitely many representations

Representation of an automaton

Properties of circuit representation

- Each automaton can have infinitely many encodings
- Each encoding can have infinitely many representations
- (Number of state bits) $\mathrm{b}_{\mathrm{Q}} \geq \log _{2}(|\mathrm{Q}|)$

Representation of an automaton

Properties of circuit representation

- Each automaton can have infinitely many encodings
- Each encoding can have infinitely many representations
- (Number of state bits) $\mathrm{b}_{\mathrm{Q}} \geq \log _{2}(|\mathrm{Q}|)$
- Two automata may have the same representation only if they are equivalent.

BC-complexity

DFA $\mathbf{A}\left(\boldsymbol{\Sigma}, \mathbf{Q}, \mathbf{Q}_{\mathbf{F}}, \boldsymbol{\delta}, \mathbf{q}_{\mathbf{0}}\right)$ is represented by a pair of circuits (\mathbf{F}, \mathbf{G})

BC-complexity

DFA $\mathbf{A}\left(\boldsymbol{\Sigma}, \mathbf{Q}, \mathbf{Q}_{\mathbf{F}}, \boldsymbol{\delta}, \mathbf{q}_{\mathbf{0}}\right)$ is represented by a pair of circuits (\mathbf{F}, \mathbf{G})

BC-complexity of a representation

$$
C_{B C}((F, G))=C(F)+C(G)+b_{Q}
$$

BC-complexity

DFA $\mathbf{A}\left(\boldsymbol{\Sigma}, \mathbf{Q}, \mathbf{Q}_{\mathbf{F}}, \mathbf{\delta}, \mathbf{q}_{\mathbf{0}}\right)$ is represented by a pair of circuits (F, G)

BC-complexity of a representation

$C_{B C}((F, G))=C(F)+C(G)+b_{Q}$
BC-complexity of an automaton
$C_{B C}(A)=\min \left\{C_{B C}(F, G):(F, G)\right.$ represents $\left.A\right\}$

BC-complexity

DFA $\mathbf{A}\left(\boldsymbol{\Sigma}, \mathbf{Q}, \mathbf{Q}_{\mathbf{F}}, \boldsymbol{\delta}, \mathbf{q}_{\mathbf{0}}\right)$ is represented by a pair of circuits (\mathbf{F}, \mathbf{G})

BC-complexity of a representation
$C_{B C}((F, G))=C(F)+C(G)+b_{Q}$
BC-complexity of an automaton
$C_{B C}(A)=\min \left\{C_{B C}(F, G):(F, G)\right.$ represents $\left.A\right\}$

BC-complexity of a regular language
$C_{B C}(R)=\min \left\{C_{B C}(A)\right.$: A recognizes $\left.R\right\}$

Example 1

Automaton A_{1} accepts language L_{1} of words for which the n-th digit from the end is " 1 ":

- $\Sigma=\{0,1\}$
- $\mathrm{C}_{\mathrm{s}}\left(A_{1}{ }^{\mathrm{n}}\right)=|\mathrm{Q}|=2^{\mathrm{n}}$

BC-complexity

Example 1

Automaton A_{1} accepts language L_{1} of words for which the n-th digit from the end is " 1 ":

- $\Sigma=\{0,1\}$
- $\mathrm{C}_{\mathrm{s}}\left(A_{1}{ }^{\mathrm{n}}\right)=|\mathrm{Q}|=2^{\mathrm{n}}$
is represented
by circuits:

BC-complexity

Example 1

Automaton A_{1} accepts language L_{1} of words for which the n-th digit from the end is " 1 ":

- $\Sigma=\{0,1\}$
- $C_{s}\left(A_{1}{ }^{n}\right)=|Q|=2^{n}$
is represented
by circuits:

BC-complexity

Example 1

Automaton A_{1} accepts language L_{1} of words for which the n-th digit from the end is " 1 ":

- $\Sigma=\{0,1\}$
- $\mathrm{C}_{s}\left(A_{1}^{\mathrm{n}}\right)=|\mathrm{Q}|=2^{\mathrm{n}}$
- $\mathrm{C}_{\mathrm{BC}}(A)=0+0+n=n$
is represented
by circuits:

BC-complexity

Example 2

A finite automaton $A_{2}{ }^{n}$, that accepts input iff the Shannon function of the last n input symbols is " 1 ":

- $\Sigma=\{0,1\}$
- $\mathrm{C}_{s}\left(A_{2}{ }^{\mathrm{n}}\right)=|\mathrm{Q}|=2^{\mathrm{n}}$

BC-complexity

Example 2

A finite automaton $A_{2}{ }^{n}$, that accepts input iff the Shannon function of the last n input symbols is " 1 ":

- $\Sigma=\{0,1\}$
- $\mathrm{C}_{\mathrm{s}}\left(A_{2}{ }^{\mathrm{n}}\right)=|\mathrm{Q}|=2^{\mathrm{n}}$

BC-complexity

Example 2

A finite automaton $A_{2}{ }^{n}$, that accepts input iff the Shannon function of the last n input symbols is " 1 ":

- $\Sigma=\{0,1\}$
- $\mathrm{C}_{\mathrm{s}}\left(A_{2}{ }^{\mathrm{n}}\right)=|\mathrm{Q}|=2^{\mathrm{n}}$
- $\mathrm{C}_{\mathrm{BC}}((\mathrm{F}, \mathrm{G})) \geq 0+2^{n} / n+n \geq 2^{n} / n$

BC-complexity

Example 2

A finite automaton $A_{2}{ }^{n}$, that accepts input iff the Shannon function of the last n input symbols is " 1 ":

- $\Sigma=\{0,1\}$
- $\mathrm{C}_{\mathrm{s}}\left(A_{2}{ }^{\mathrm{n}}\right)=|\mathrm{Q}|=2^{\mathrm{n}}$
- $\mathrm{C}_{\mathrm{BC}}((\mathrm{F}, \mathrm{G})) \geq 0+2^{\mathrm{n}} / n+n \geq 2^{\mathrm{n}} / n$
- $\mathrm{C}_{\mathrm{BC}}\left(A_{2}{ }^{\mathrm{n}}\right) \geq 2^{\mathrm{n}} / n^{2}$
(proof omitted)

BC-complexity

Upper and lower bounds for BC-complexity

BC-complexity

Upper and lower bounds for BC-complexity

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

BC-complexity

Upper and lower bounds for BC-complexity

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

Lower bound:
$\mathrm{n} \leq \mathrm{C}_{\mathrm{BC}}(A)$

BC-complexity

Upper and lower bounds for BC-complexity

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

Lower bound: $\quad \mathrm{n} \leq \mathrm{C}_{\mathrm{BC}}(A)$
Upper bound (simple) $\quad C_{B C}(A) \leqslant k 2^{n}+2^{n} / n+n \leqslant k 2^{n}$

BC-complexity

Upper and lower bounds for BC-complexity

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

Lower bound:

$$
\mathrm{n} \leq \mathrm{C}_{\mathrm{BC}}(A)
$$

Upper bound (simple) $\quad \mathrm{C}_{\mathrm{BC}}(A) \leqslant \mathrm{k} 2^{n}+2^{n} / n+\mathrm{n} \leqslant \mathrm{k} 2^{n}$
Change the encoding (reorder states)

BC-complexity

Upper and lower bounds for BC-complexity

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

Lower bound:

$$
\mathrm{n} \leq \mathrm{C}_{\mathrm{BC}}(A)
$$

Upper bound (simple) $\quad C_{B C}(A) \leqslant k 2^{n}+2^{n} / n+n \leqslant k 2^{n}$
Change the encoding (reorder states)
Upper bound
$\mathrm{C}_{\mathrm{BC}}(A) \leqslant(\mathrm{k}-1) 2^{\mathrm{n}}$

BC-complexity

Upper and lower bounds for BC-complexity

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

Lower bound: $\mathrm{n} \leq \mathrm{C}_{\mathrm{BC}}(A)$
Upper bound (simple) $\quad C_{B C}(A) \leqslant k 2^{n}+2^{n} / n+n \leqslant k 2^{n}$
Change the encoding (reorder states)
Upper bound
$\mathrm{C}_{\mathrm{BC}}(A) \lesssim(k-1) 2^{\mathrm{n}}$
Counting argument

BC-complexity

Upper and lower bounds for BC-complexity

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

Lower bound:

$$
\mathrm{n} \leq \mathrm{C}_{\mathrm{BC}}(A)
$$

Upper bound (simple) $\quad C_{B C}(A) \leqslant k 2^{n}+2^{n} / n+n \leqslant k 2^{n}$
Change the encoding (reorder states)
Upper bound
$\mathrm{C}_{\mathrm{BC}}(A) \approx(\mathrm{k}-1) 2^{\mathrm{n}}$
Counting argument
For almost all A
$\mathrm{C}_{\mathrm{BC}}(A) \gtrsim(\mathrm{k}-1) 2^{\mathrm{n}}$

BC-complexity

Upper and lower bounds for BC-complexity

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

Lower bound:

$$
\mathrm{n} \leq \mathrm{C}_{\mathrm{BC}}(A)
$$

Upper bound (simple) $\quad C_{B C}(A) \leqslant k 2^{n}+2^{n} / n+n \leqslant k 2^{n}$
Change the encoding (reorder states)
Upper bound
$\mathrm{C}_{\mathrm{BC}}(A) \leqslant(\mathrm{k}-1) 2^{\mathrm{n}}$
Counting argument
For almost all A
$\mathrm{C}_{\mathrm{BC}}(A) \gtrsim(\mathrm{k}-1) 2^{\mathrm{n}}$
$x \gtrsim f(n) \Leftrightarrow x>f(n)(1-o(1))$

BC-complexity

"Shannon effect" for the BC-complexity of DFA.

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

BC-complexity

"Shannon effect" for the BC-complexity of DFA.

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

For almost all $A \quad \mathrm{C}_{\mathrm{BC}}(A) \approx(\mathrm{k}-1) 2^{\mathrm{n}}$

BC-complexity

"Shannon effect" for the BC-complexity of DFA.

- $\mathrm{C}_{\mathrm{BC}}(\mathrm{F}, \mathrm{G})=\mathrm{C}(\mathrm{F})+\mathrm{C}(\mathrm{G})+\mathrm{b}_{\mathrm{Q}}$
- $|\Sigma|=k$ and $|Q|=2^{n}$:

For almost all $A \quad \mathrm{C}_{\mathrm{BC}}(A) \approx(\mathrm{k}-1) 2^{\mathrm{n}}$

- $\mathrm{C}_{\mathrm{BC}}\left(A_{1}{ }^{\mathrm{n}}\right)=n$
- $\mathrm{C}_{\mathrm{BC}}\left(A_{2}{ }^{\mathrm{n}}\right) \geq 2^{\mathrm{n}} / n^{2}$

BC-complexity

Some special cases

- Nondeterministic automata
- Language operations

BC-complexity

Nondeterministic automata (NFA)

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \lesssim(\mathrm{k}-1) 2^{\mathrm{n}}$

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \lesssim(\mathrm{k}-1) 2^{\mathrm{n}}$

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant(\mathrm{k}-1) 2^{\mathrm{n}}$

We can do much better!

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant(k-1) 2^{\mathrm{n}}$

We can do much better!

- Encode one state of NFA as one state bit.

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant(\mathrm{k}-1) 2^{\mathrm{n}}$

We can do much better!

- Encode one state of NFA as one state bit.
- $\mathrm{s}_{1}{ }^{\prime}=1 \Leftrightarrow\left(\mathrm{x}=1 \&\left(\mathrm{~s}_{2}=1 \vee \mathrm{~s}_{3}=1\right)\right) \vee\left(\mathrm{x}=0 \&\left(\mathrm{~s}_{2}=1 \vee \mathrm{~s}_{4}=1\right)\right)$

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant(k-1) 2^{\mathrm{n}}$

We can do much better!

- Encode one state of NFA as one state bit.
- $\mathrm{s}_{1}{ }^{\prime}=1 \Leftrightarrow\left(\mathrm{x}=1 \&\left(\mathrm{~s}_{2}=1 \vee \mathrm{~s}_{3}=1\right)\right) \vee\left(\mathrm{x}=0 \&\left(\mathrm{~s}_{2}=1 \vee \mathrm{~s}_{4}=1\right)\right)$

Much simpler than a general function on n arguments!

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \lesssim(\mathrm{k}-1) 2^{\mathrm{n}}$ (from the upper bound)

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant(\mathrm{k}-1) 2^{\text {n }}$ (from the upper bound)
- $\mathrm{C}_{\mathrm{BC}}(A)<\mathrm{kn}^{2} \quad$ (simple construction)

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant(\mathrm{k}-1) 2^{\text {n }}$ (from the upper bound)
- $\mathrm{C}_{\mathrm{BC}}(A)<\mathrm{kn}^{2} \quad$ (simple construction)
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant \mathrm{kn}^{2} / \log n$ (nearly optimal construction)

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant(\mathrm{k}-1) 2^{\text {n }}$ (from the upper bound)
- $\mathrm{C}_{\mathrm{BC}}(A)<\mathrm{kn}^{2} \quad$ (simple construction)
- $\mathrm{C}_{\mathrm{BC}}(A) \lesssim \mathrm{kn}^{2} / \log n$ (nearly optimal construction)

Counting argument
For almost all A

$$
\mathrm{C}_{\mathrm{BC}}(A) \gtrsim(\mathrm{k}-1) \mathrm{n}^{2} / 2 \log n
$$

BC-complexity

Nondeterministic automata (NFA)

- NFA with n states \rightarrow DFA A with 2^{n} states.
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant(\mathrm{k}-1) 2^{\text {n }}$ (from the upper bound)
- $\mathrm{C}_{\mathrm{BC}}(A)<\mathrm{kn}^{2} \quad$ (simple construction)
- $\mathrm{C}_{\mathrm{BC}}(A) \leqslant \mathrm{kn}^{2} / \log n$ (nearly optimal construction)

Counting argument
For almost all $A \quad \mathrm{C}_{\mathrm{BC}}(A) \gtrsim(\mathrm{k}-1) \mathrm{n}^{2} / 2 \log n$
No Shannon effect right now for NFA (but coming close)

BC-complexity

Upper bounds of BC-complexity for Language operations

- Given two languages L_{1} and L_{2} with state complexities m and n and BC -complexities a and b.

Operation	State comp.	BC-complexity
$L_{1} \cup L_{2}$	$m n$	$a+b+1$
$L_{1} \cap L_{2}$	$m n$	$a+b+1$
$\Sigma^{*}-L_{1}$	m	$a+1$
$L_{1}{ }^{R}$	2^{m}	$2 m(m+1)$
$L_{1} L_{2}$	$(2 m-1) 2^{n-1}$	$2 a+2 n(n+1)$
$L_{1}{ }^{*}$	$2^{m-1}+2^{m-2}$	$2 m(m+1)$

BC-complexity

A computer

BC-complexity

A computer

- Is computer a Turing machine?

BC-complexity

A computer

- Is computer a Turing machine?
- Is computer a finite automaton?

BC-complexity

A computer

- Is computer a Turing machine?
- Is computer a finite automaton?

On each step it:

- reads input (may be nothing),
- transforms its registers and memory according to some simple function,
- has state space with around $\mathbf{2 2 4 0}^{24}$ states (2^{40} state bits)

BC-complexity

A computer

- Is computer a Turing machine?
- Is computer a finite automaton?

On each step it:

- reads input (may be nothing),
- transforms its registers and memory according to some simple function,
- has state space with around $\mathbf{2 2}^{240}$ states (2^{40} state bits)
- Is computer (an efficient) representation of a finite automaton?

Minimization

Minimization

Minimization

- For every automaton A one can find its minimal (with the respect to the number of states) automaton $\mathrm{M}(A)$

Minimization

- For every automaton A one can find its minimal (with the respect to the number of states) automaton $\mathrm{M}(A)$
- Is the BC -complexity of $\mathrm{M}(A)$ also minimal?

Minimization

- For every automaton A one can find its minimal (with the respect to the number of states) automaton $\mathrm{M}(A)$
- Is the BC -complexity of $\mathrm{M}(A)$ also minimal?
- Can it be that for some automaton A :

$$
\mathrm{C}_{\mathrm{BC}}(\mathrm{M}(A)) \gg \mathrm{C}_{\mathrm{BC}}(A) ?
$$

Minimization

Theorem:
If there exists a polynomial $p(\mathrm{x})$ such that
$\mathrm{C}_{\mathrm{BC}}(\mathrm{M}(A))<p\left(\mathrm{C}_{\mathrm{BC}}(A)\right)$
for all automata A then PSPACE $\subseteq \mathrm{P} /$ Poly

Minimization

Theorem:
If there exists a polynomial $p(\mathrm{x})$ such that
$\mathrm{C}_{\mathrm{BC}}(\mathrm{M}(A))<p\left(\mathrm{C}_{\mathrm{BC}}(A)\right)$
for all automata A then PSPACE $\subseteq P /$ Poly

For every n we can build an automaton B_{n} with

- Poly(n) state bits ($2^{\text {Poly }(n)}$ states)
- $\mathrm{C}_{\mathrm{BC}}\left(\mathrm{B}_{\mathrm{n}}\right)=\operatorname{Poly}(\mathrm{n})$
- $\mathrm{C}_{\mathrm{BC}}\left(\mathrm{M}\left(\mathrm{B}_{\mathrm{n}}\right)\right) \notin \operatorname{Poly}(\mathrm{n})$

Kolmogorov complexity

Kolmogorov complexity of automata

Kolmogorov complexity

Kolmogorov complexity of automata

$C_{k}(A)=$ minimal size of a program that outputs state transition table of automaton A

Kolmogorov complexity

Kolmogorov complexity of automata

$C_{k}(A)=$ minimal size of a program that outputs state transition table of automaton A

- $C_{K}(A)$: efficient description of A
- $\mathrm{C}_{\mathrm{BC}}(\mathrm{A})$: efficient execution of A

Kolmogorov complexity

Kolmogorov complexity of automata

$C_{k}(A)=$ minimal size of a program that outputs state transition table of automaton A

- $C_{k}(A)$: efficient description of A
- $\mathrm{C}_{\mathrm{BC}}(\mathrm{A})$: efficient execution of A

There is a constant c such that
$C_{k}(M(A)) \leq C_{k}(A)+C$
for all automata A .

Kolmogorov complexity

Kolmogorov complexity of automata

$C_{k}(A)=$ minimal size of a program that outputs state transition table of automaton A

- $C_{k}(A)$: efficient description of A
- $\mathrm{C}_{\mathrm{BC}}(\mathrm{A})$: efficient execution of A

There is a constant c such that
$C_{k}(M(A)) \leq C_{k}(A)+C$
for all automata A .
If there exists a polynomial $p(\mathrm{x})$ such that
$\mathrm{C}_{\mathrm{BC}}(\mathrm{M}(A))<p\left(\mathrm{C}_{\mathrm{BC}}(A)\right)$
for all automata A then PSPACE $\subseteq \mathrm{P} /$ Poly

Conclusions

Conclusions

Conclusions

Conclusions

"What is the most complex automaton that we can build (or model on a computer)"?

Conclusions

Conclusions

"What is the most complex automaton that we can build (or model on a computer)"?

- We can model any automaton with a reasonable BC-complexity
- Many "naturally generated" DFAs have large state complexity but low BC complexity
- Sometimes minimizing the number of states leads to (a large) increase in BC-complexity

Conclusions

Open questions

Conclusions

Open questions

Minimizing the number of states is not always optimal for achieving minimal BC-complexity.

Conclusions

Open questions

Minimizing the number of states is not always optimal for achieving minimal BC-complexity.

- Is it always true that representation with minimal ($\log (|\mathrm{Q}|)$ number of state bits is optimal?

Conclusions

Open questions

Minimizing the number of states is not always optimal for achieving minimal BC-complexity.

- Is it always true that representation with minimal ($\log (|\mathrm{Q}|)$ number of state bits is optimal?
- Can the upper and lower bounds for NFA be improved?

Conclusions

Open questions

Minimizing the number of states is not always optimal for achieving minimal BC-complexity.

- Is it always true that representation with minimal ($\log (|\mathrm{Q}|)$ number of state bits is optimal?
- Can the upper and lower bounds for NFA be improved?
- How to estimate the lower bounds for language operations?

Conclusions

Open questions

Conclusions

Open questions

$$
\begin{aligned}
& \text { 图回图—图 } \\
& \text { 图图図一図 }
\end{aligned}
$$

Conclusions

Open questions

$$
y_{i}=x_{j 1} \vee x_{j 2} \vee \ldots \vee x_{j k}
$$

- Simple contruction needs on average $\mathrm{n}^{2} / 2$ gates

Conclusions

Open questions

$$
y_{i}=x_{j 1} \vee x_{j 2} \vee \ldots V x_{j k}
$$

- Simple contruction needs on average $\mathrm{n}^{2} / 2$ gates
- More efficient contruction needs asymptotically $n^{2} / \log n$ gates

Conclusions

Open questions

$$
y_{i}=x_{j 1} \vee x_{j 2} \vee \ldots \vee x_{j k}
$$

- Simple contruction needs on average $\mathrm{n}^{2} / 2$ gates
- More efficient contruction needs asymptotically $\mathrm{n}^{2} / \log \mathrm{n}$ gates
- Can you do better?

Conclusions

Open questions

$$
y_{i}=x_{j 1} \vee x_{j 2} \vee \ldots \vee x_{j k}
$$

- Simple contruction needs on average $\mathrm{n}^{2} / 2$ gates
- More efficient contruction needs asymptotically $\mathrm{n}^{2} / \log \mathrm{n}$ gates
- Can you do better?
- Lower bounds is $\mathrm{n}^{2} / 2 \log n$ gates

Thank you!

