Shannon Effect for BC-complexity of Finite Automata

Māris Valdats University of Latvia 2014.10.04

Outline of the talk

- Finite automata (DFA)
- Representation of automata with Boolean circuits
- BC-complexity
- Shannon effect for BC-complexity
- NFA, language operations
- Minimization

A finite automaton (DFA) consists of:

• Input tape

- Read-only head moving in only one direction
- On each step
 - -Read input symbol
 - -Change the state according to the transition function
 - -Move the head
- If there are no more input symbols
 - -If $q \in Q_F$ accept word
 - -If $q \notin Q_F$ reject word

A finite automaton (DFA) consists of:

• Input tape

- Read-only head moving in only one direction
- On each step
 - -Read input symbol
 - -Change the state according to the transition function
 - -Move the head
- If there are no more input symbols
 - -If $q \in Q_F$ accept word
 - -If $q \notin Q_F$ reject word

- Σ is the input alphabet
- Q is the state space
- $Q_F \subseteq Q$ is the set of final states
- $\delta : \Sigma \times Q \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state

- Σ is the input alphabet
- Q is the state space
- $Q_{F} \subseteq Q$ is the set of final states
- $\delta : \Sigma \times Q \rightarrow Q$ is the transition function
- q₀∈Q is the start state

Complexity measures of finite automata

- Σ is the input alphabet
- Q is the state space
- $Q_{F} \subseteq Q$ is the set of final states
- $\delta : \Sigma \times Q \rightarrow Q$ is the transition function
- q₀∈Q is the start state

Complexity measures of finite automata

• State complexity $C_s(A) = |Q|$

- Σ is the input alphabet
- Q is the state space
- $Q_F \subseteq Q$ is the set of final states
- $\delta : \Sigma \times Q \rightarrow Q$ is the transition function
- q₀∈Q is the start state

Complexity measures of finite automata

- State complexity $C_s(A) = |Q|$
- •?

What is the most complex automaton that we can build (model on a computer)?

What is the most complex automaton that we can build (model on a computer)?

- 2¹⁰ states?
- 2¹⁰⁰ states?
- 2¹⁰⁰⁰ states?

1. Automaton A_1 accepts language L_1 of words in a binary alphabet $\Sigma = \{0, 1\}$ for which 1000th digit from the end is "1".

$$\mathbf{X} \in \mathbf{L}_{1} \Leftrightarrow \mathbf{X}_{|\mathbf{x}|-999} = \mathbf{1}$$

1. Automaton A_1 accepts language L_1 of words in a binary alphabet $\Sigma = \{0, 1\}$ for which 1000th digit from the end is "1".

$$\mathbf{x} \in \mathbf{L}_{1} \Leftrightarrow \mathbf{x}_{|\mathbf{x}|-999} = 1$$

- State complexity $C_s(A_1)=2^{1000}$
- Implementation use 1000 bit LIFO register

1. Automaton A_1 accepts language L_1 of words in a binary alphabet $\Sigma = \{0, 1\}$ for which 1000th digit from the end is "1".

$$\mathbf{x} \in \mathbf{L}_{1} \Leftrightarrow \mathbf{x}_{|\mathbf{x}|-999} = 1$$

- State complexity $C_s(A_1)=2^{1000}$
- Implementation use 1000 bit LIFO register

2. Automaton A_2 - a "random" 2^{1000} state automaton in a binary input alphabet.

2. Automaton A_2 - a "random" 2¹⁰⁰⁰ state automaton in a binary input alphabet.

- State complexity $C_{s}(A_{2})=2^{1000}$
- Implementation a table with 2^{1001} rows

How to show that the "random" automaton A_2 is more complex than A_1 if they have same state complexity?

How to show that the "random" automaton A_2 is more complex than A_1 if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)

How to show that the "random" automaton A_2 is more complex than A_1 if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space,

A(Σ, Q, Q_F, δ, q₀)

How to show that the "random" automaton A_2 is more complex than A_1 if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space,

$$A(\Sigma, Q, Q_F, \delta, q_0)$$

How to show that the "random" automaton A_2 is more complex than A_1 if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space,

but that of the transition function

$$A(\Sigma, Q, Q_F, \delta, q_0)$$

How to show that the "random" automaton A_2 is more complex than A_1 if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space,

but that of the transition function

How to show that the "random" automaton A_2 is more complex than A_1 if they have same state complexity?

Solution!

- Encode the state space into state register (bit vector)
- Measure not the complexity of the state space,

but that of the transition function

A(
$$\Sigma$$
, Q, Q_F(δ , q₀)

Representation of an automaton with a Boolean circuit

Representation of an automaton with a Boolean circuit

Encode:

Representation of an automaton with a Boolean circuit

Encode:

• State space $Q \rightarrow$ state register ($b_0 \ge \log|Q|$ state bits)

Representation of an automaton with a Boolean circuit

Encode:

- State space $Q \rightarrow$ state register ($b_0 \ge \log|Q|$ state bits)
- Input alphabet $\Sigma \rightarrow \text{input bits } (b_{\Sigma} \ge \log |\Sigma| \text{ state bits})$

Representation of an automaton with a Boolean circuit

Encode:

- State space $Q \rightarrow$ state register ($b_0 \ge \log|Q|$ state bits)
- Input alphabet $\Sigma \rightarrow$ input bits ($b_{\gamma} \ge \log |\Sigma|$ state bits)

Represent:

Representation of an automaton with a Boolean circuit

Encode:

- State space $Q \rightarrow$ state register ($b_0 \ge \log|Q|$ state bits)
- Input alphabet $\Sigma \rightarrow$ input bits ($b_{\gamma} \ge \log |\Sigma|$ state bits)

Represent:

- Transition function $\delta : \Sigma \times Q \rightarrow Q \rightarrow Boolean circuit:$
 - Inputs : input bits and state bits
 - Outputs : state bits

Representation of an automaton with a Boolean circuit

Encode:

- State space $Q \rightarrow$ state register ($b_0 \ge \log|Q|$ state bits)
- Input alphabet $\Sigma \rightarrow \text{input bits } (b_{\Sigma} \ge \log |\Sigma| \text{ state bits})$

Represent:

- Transition function $\delta : \Sigma \times Q \rightarrow Q \rightarrow Boolean circuit:$
 - Inputs : input bits and state bits
 - Outputs : state bits
- Set of final states $Q_F \subseteq Q \rightarrow a$ Boolean circuit for the characteristic function of the set Q_F :
 - Inputs : state bits
 - Outputs : one bit (accept/reject)

Representation of an automaton with two Boolean circuits:

 $\geq \log |Q|$ state bits

 $\geq \log |\Sigma|$ input bits

• Each automaton can have infinitely many encodings

- Each automaton can have infinitely many encodings
- Each encoding can have infinitely many representations

- Each automaton can have infinitely many encodings
- Each encoding can have infinitely many representations
- (Number of state bits) $b_Q \ge \log_2(|Q|)$

- Each automaton can have infinitely many encodings
- Each encoding can have infinitely many representations
- (Number of state bits) $b_0 \ge \log_2(|Q|)$
- Two automata may have the same representation only if they are equivalent.

DFA $A(\Sigma, Q, Q_F, \delta, q_0)$ is represented by a pair of circuits (F, G)
DFA $A(\Sigma, Q, Q_F, \delta, q_0)$ is represented by a pair of circuits (F, G)

BC-complexity of a representation

 $C_{BC}((F, G)) = C(F) + C(G) + b_{Q}$

DFA $A(\Sigma, Q, Q_F, \delta, q_0)$ is represented by a pair of circuits (F, G)

BC-complexity of a representation

 $C_{_{BC}}((F, G)) = C(F)+C(G)+b_{_Q}$

BC-complexity of an automaton

 $C_{BC}(A) = min\{C_{BC}(F, G): (F, G) \text{ represents } A\}$

DFA $A(\Sigma, Q, Q_F, \delta, q_0)$ is represented by a pair of circuits (F, G)

BC-complexity of a representation

 $C_{_{BC}}((F, G)) = C(F) + C(G) + b_{_Q}$

BC-complexity of an automaton

 $C_{BC}(A) = min\{C_{BC}(F, G): (F, G) \text{ represents } A\}$

BC-complexity of a regular language

 $C_{BC}(R) = \min\{C_{BC}(A): A \text{ recognizes } R\}$

Automaton A_1 accepts language L_1 of words for which the *n* -th digit from the end is "1":

•
$$C_s(A_1^n) = |Q| = 2^n$$

Automaton A_1 accepts language L_1 of words for which the *n* -th digit from the end is "1":

•
$$C_s(A_1^n) = |Q| = 2^n$$

is represented by circuits:

Automaton A_1 accepts language L_1 of words for which the *n* -th digit from the end is "1":

Automaton A_1 accepts language L_1 of words for which the *n* -th digit from the end is "1":

in

- $\Sigma = \{0, 1\}$
- $C_s(A_1^n) = |Q| = 2^n$
- $C_{BC}(A) = 0 + 0 + n = n$

S₁ S₁ S₁ S2 S2 s, S3 S2 S_{q} out S4 S4 S_4 S S S

is represented by circuits:

- Σ={0, 1}
- $C_s(A_2^n) = |Q| = 2^n$

- Σ={0, 1}
- $C_s(A_2^n) = |Q| = 2^n$

- Σ={0, 1}
- $C_s(A_2^n) = |Q| = 2^n$
- $C_{BC}((F, G)) \ge 0 + 2^n/n + n \ge 2^n/n$

- Σ={0, 1}
- $C_s(A_2^n) = |Q| = 2^n$
- $C_{BC}((F, G)) \ge 0 + 2^n/n + n \ge 2^n/n$
- $C_{BC}(A_2^n) \ge 2^n/n^2$ (proof omitted)

- $C_{BC}(F, G) = C(F) + C(G) + b_{Q}$
- $|\Sigma| = k$ and $|Q| = 2^n$:

- $C_{BC}(F, G) = C(F) + C(G) + b_{Q}$
- $|\Sigma| = k$ and $|Q| = 2^n$:

Lower bound: $n \le C_{BC}(A)$

•
$$C_{BC}(F, G) = C(F) + C(G) + b_{Q}$$

• $|\Sigma| = k$ and $|Q| = 2^n$:

Lower bound:

$$n \le C_{BC}(A)$$

$$C_{BC}(A) \leq k2^n + 2^n/n + n \leq k2^n$$

•
$$C_{BC}(F, G) = C(F) + C(G) + b_{Q}$$

• $|\Sigma| = k$ and $|Q| = 2^n$:

Lower bound: $n \le C_{BC}(A)$

Upper bound (simple) $C_{BC}(A) \leq k2^n + 2^n/n + n \leq k2^n$

Change the encoding (reorder states)

•
$$C_{BC}(F, G) = C(F) + C(G) + b_{Q}$$

• $|\Sigma| = k$ and $|Q| = 2^n$:

Lower bound: $n \leq C_{BC}(A)$ Upper bound (simple) $C_{BC}(A) \leq k2^n + 2^n/n + n \leq k2^n$ Change the encoding (reorder states)Upper bound $C_{BC}(A) \leq (k-1)2^n$

•
$$C_{BC}(F, G) = C(F) + C(G) + b_{Q}$$

• $|\Sigma| = k$ and $|Q| = 2^n$:

Lower bound: $n \le C_{BC}(A)$

Upper bound (simple) $C_{BC}(A) \leq k2^n + 2^n/n + n \leq k2^n$ Change the encoding (reorder states)Upper bound $C_{BC}(A) \leq (k-1)2^n$ Counting argument

•
$$C_{BC}(F, G) = C(F) + C(G) + b_{Q}$$

• $|\Sigma| = k$ and $|Q| = 2^n$:

Lower bound: $n \le C_{BC}(A)$

Upper bound (simple) $C_{BC}(A) \leq k2^n + 2^n/n + n \leq k2^n$ Change the encoding (reorder states)Upper bound $C_{BC}(A) \leq (k-1)2^n$ Counting argumentFor almost all A $C_{BC}(A) \geq (k-1)2^n$

•
$$C_{BC}(F, G) = C(F) + C(G) + b_{Q}$$

• $|\Sigma| = k$ and $|Q| = 2^n$:

Lower bound: $n \le C_{BC}(A)$

Upper bound (simple) $C_{BC}(A) \leq k2^n + 2^n/n + n \leq k2^n$ Change the encoding (reorder states)Upper bound $C_{BC}(A) \leq (k-1)2^n$ Counting argumentFor almost all A $C_{BC}(A) \geq (k-1)2^n$

 $x \gtrsim f(n) \Leftrightarrow x > f(n)(1 - o(1))$

"Shannon effect" for the BC-complexity of DFA.

- $C_{BC}(F, G) = C(F) + C(G) + b_{Q}$
- $|\Sigma| = k$ and $|Q| = 2^n$:

"Shannon effect" for the BC-complexity of DFA.

- $C_{BC}(F, G) = C(F) + C(G) + b_{Q}$
- $|\Sigma| = k$ and $|Q| = 2^n$:

For almost all A $C_{BC}(A) \approx (k-1)2^n$

"Shannon effect" for the BC-complexity of DFA.

- $C_{BC}(F, G) = C(F) + C(G) + b_{Q}$
- $|\Sigma| = k$ and $|Q| = 2^n$:

For almost all
$$A$$
 $C_{BC}(A) \approx (k-1)2^n$

- $C_{BC}(A_1^n) = n$
- $C_{BC}(A_2^n) \ge 2^n/n^2$

Some special cases

- Nondeterministic automata
- Language operations

• NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^{n}$

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \lesssim (k-1)2^{n}$

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^n$

We can do much better!

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^n$

We can do much better!

• Encode one state of NFA as one state bit.

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^n$

We can do much better!

S,

• Encode one state of NFA as one state bit.

•
$$s_1' = 1 \Leftrightarrow (x=1 \& (s_2=1 \lor s_3=1)) \lor (x=0 \& (s_2=1 \lor s_4=1))$$

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^n$

We can do much better!

•
$$s_1' = 1 \Leftrightarrow (x=1 \& (s_2=1 \lor s_3=1)) \lor (x=0 \& (s_2=1 \lor s_4=1))$$

Much simpler than a general function on *n* arguments!

S,

S.

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^n$ (from the upper bound)

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^n$ (from the upper bound)
- $C_{BC}(A) < kn^2$ (simple construction)

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^n$ (from the upper bound)
- $C_{BC}(A) < kn^2$ (simple construction)
- $C_{BC}(A) \leq \frac{kn^2}{\log n}$ (nearly optimal construction)

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^n$ (from the upper bound)
- $C_{BC}(A) < kn^2$ (simple construction)
- $C_{BC}(A) \leq \frac{kn^2}{\log n}$ (nearly optimal construction)

Counting argument

For almost all A $C_{BC}(A) \gtrsim (k-1)n^2/2\log n$
Nondeterministic automata (NFA)

- NFA with *n* states \rightarrow DFA *A* with 2ⁿ states.
- $C_{BC}(A) \leq (k-1)2^n$ (from the upper bound)
- $C_{BC}(A) < kn^2$ (simple construction)
- $C_{BC}(A) \leq \frac{kn^2}{\log n}$ (nearly optimal construction)

Counting argument

For almost all A $C_{BC}(A) \gtrsim (k-1)n^2/2\log n$

No Shannon effect right now for NFA (but coming close)

Upper bounds of BC-complexity for Language operations

• Given two languages L₁ and L₂ with state complexities *m* and *n* and BC-complexities *a* and *b*.

Operation	State comp.	BC-complexity
$L_1 \cup L_2$	mn	a+b+1
$L_1 \cap L_2$	mn	a+b+1
Σ*-L ₁	m	a+1
L ₁ ^R	2 ^m	2m(m+1)
L_1L_2	(2m-1)2 ⁿ⁻¹	2a+2n(n+1)
L ₁ *	2 ^{m-1} +2 ^{m-2}	2m(m+1)

• Is computer a Turing machine?

- Is computer a Turing machine?
- Is computer a finite automaton?

- Is computer a Turing machine?
- Is computer a finite automaton? On each step it:
- reads input (may be nothing),
- transforms its registers and memory according to some simple function,
- has state space with around 2²⁴⁰ states (2⁴⁰ state bits)

- Is computer a Turing machine?
- Is computer a finite automaton? On each step it:
- reads input (may be nothing),
- transforms its registers and memory according to some simple function,
- has state space with around 2²⁴⁰ states (2⁴⁰ state bits)
- Is computer (an efficient) representation of a finite automaton?

• For every automaton *A* one can find its minimal (with the respect to the number of states) automaton M(*A*)

- For every automaton *A* one can find its minimal (with the respect to the number of states) automaton M(*A*)
 - Is the BC-complexity of M(*A*) also minimal?

- For every automaton *A* one can find its minimal (with the respect to the number of states) automaton M(*A*)
 - Is the BC-complexity of M(A) also minimal?
 - Can it be that for some automaton A: $C_{BC}(M(A)) \gg C_{BC}(A)$?

Theorem: If there exists a polynomial p(x) such that $C_{BC}(M(A)) < p(C_{BC}(A))$ for all automata A then PSPACE \subseteq P/Poly

Theorem: If there exists a polynomial p(x) such that $C_{BC}(M(A)) < p(C_{BC}(A))$ for all automata A then PSPACE \subseteq P/Poly

For every n we can build an automaton ${\rm B}_{\rm n}$ with

- Poly(n) state bits (2^{Poly(n)} states)
- $C_{BC}(B_n) = Poly(n)$
- $C_{BC}(M(B_n)) \notin Poly(n)$

 $C_{\kappa}(A)$ =minimal size of a program that outputs state transition table of automaton A

 $C_{\kappa}(A)$ =minimal size of a program that outputs state transition table of automaton A

- $C_{\kappa}(A)$: efficient description of A
- $C_{BC}(A)$: efficient execution of A

 $C_{\kappa}(A)$ =minimal size of a program that outputs state transition table of automaton A

- $C_{\kappa}(A)$: efficient description of A
- $C_{BC}(A)$: efficient execution of A

There is a constant c such that $C_{\kappa}(M(A)) \leq C_{\kappa}(A)+c$ for all automata A.

 $C_{\kappa}(A)$ =minimal size of a program that outputs state transition table of automaton A

- $C_{\kappa}(A)$: efficient description of A
- $C_{BC}(A)$: efficient execution of A

There is a constant c such that $C_{\kappa}(M(A)) \leq C_{\kappa}(A) + c$

for all automata A.

If there exists a polynomial p(x) such that $C_{BC}(M(A)) < p(C_{BC}(A))$

for all automata A then PSPACE \subseteq P/Poly

Conclusions

Conclusions

"What is the most complex automaton that we can build (or model on a computer)"?

Conclusions

"What is the most complex automaton that we can build (or model on a computer)"?

- We can model any automaton with a reasonable BC-complexity
- Many "naturally generated" DFAs have large state complexity but low BC complexity
- Sometimes minimizing the number of states leads to (a large) increase in BC-complexity

Minimizing the number of states is not always optimal for achieving minimal BC-complexity.

Minimizing the number of states is not always optimal for achieving minimal BC-complexity.

 Is it always true that representation with minimal (log(|Q|) number of state bits is optimal?

Minimizing the number of states is not always optimal for achieving minimal BC-complexity.

- Is it always true that representation with minimal (log(|Q|) number of state bits is optimal?
- Can the upper and lower bounds for NFA be improved?

Minimizing the number of states is not always optimal for achieving minimal BC-complexity.

- Is it always true that representation with minimal (log(|Q|) number of state bits is optimal?
- Can the upper and lower bounds for NFA be improved?
- How to estimate the lower bounds for language operations?

 $y_i = x_{j1} V x_{j2} V ... V x_{jk}$

$$\mathbf{y}_{i} = \mathbf{x}_{j1} \ \mathbf{V} \ \mathbf{x}_{j2} \ \mathbf{V} \ \dots \ \mathbf{V} \ \mathbf{x}_{jk}$$

• Simple contruction needs on average n²/2 gates

$$\mathbf{y}_{i} = \mathbf{x}_{j1} \ \mathbf{V} \ \mathbf{x}_{j2} \ \mathbf{V} \ \dots \ \mathbf{V} \ \mathbf{x}_{jk}$$

- Simple contruction needs on average n²/2 gates
- More efficient contruction needs asymptotically n²/log n gates

$$y_i = x_{j1} V x_{j2} V ... V x_{jk}$$

- Simple contruction needs on average n²/2 gates
- More efficient contruction needs asymptotically $n^2/\log n$ gates
- Can you do better?
Open questions

$$\mathbf{y}_{i} = \mathbf{x}_{j1} \ \mathbf{V} \ \mathbf{x}_{j2} \ \mathbf{V} \ \dots \ \mathbf{V} \ \mathbf{x}_{jk}$$

- Simple contruction needs on average n²/2 gates
- More efficient contruction needs asymptotically n²/log n gates
- Can you do better?
- Lower bounds is n²/2log*n* gates

Thank you!