Two embarrassingly parallel methods for Secure Multiparty Computation: Point Counting

Toomas Krips, Jan Willemson

October 4, 2014

University of Tartu, Department of Mathematics and Computer Science, STACC
Cybernetica AS

Point-Counting:Basic Idea

- Have a set of points.

Point-Counting:Basic Idea

- Have a set of points.
- Perform some test on every point.

Point-Counting:Basic Idea

- Have a set of points.
- Perform some test on every point.
- (Weighted) sum of points that pass the test is (proportional to) our answer.

Point-Counting:Basic Idea

- Have a set of points.
- Perform some test on every point.
- (Weighted) sum of points that pass the test is (proportional to) our answer.
- Good because round complexity very low.

Secure Multiparty Computation

- How to compute with private/secret/encrypted data?
- $\llbracket x \rrbracket$ will mean that the value of x is secret.

More precisely about our case

- We already have some existing protocols, but:
- Program flow MAY NOT depend on private data.
- Parallel execution very-very desirable.

Ingredients

- You will need the following ingredients:

Ingredients

- You will need the following ingredients:
- Ability to represent non-integer numbers (such as floats or fixes) and on them do:

Ingredients

- You will need the following ingredients:
- Ability to represent non-integer numbers (such as floats or fixes) and on them do:
- Cheap addition of private values.
- Comparison $\llbracket c \rrbracket= \begin{cases}0 & \text { if } \llbracket x \rrbracket \leq \llbracket y \rrbracket \\ 1 & \text { if } \llbracket x \rrbracket>\llbracket y \rrbracket\end{cases}$
- Multiplication of private and public values.
- The "test" that is applied to all points.

Riemann sums

Want to compute $\int_{a}^{\llbracket x \rrbracket} f(t) d t, \llbracket x \rrbracket$ is secret, we know $x \in[a, b)$.

Riemann sums

In non-secret world use rectangle formula. For a small h, compute $x_{i}=a+i \cdot h$ for $x_{i} \in[a, x)$ and let answer be $\sum_{i} f\left(x_{i}\right) h$.

Riemann sums

Similar solution for secret world. Let $x_{i}=a+i \cdot h$ for $x_{i} \in[a, b)$ and securely compute $\llbracket c_{i} \rrbracket=x_{i} \stackrel{?}{\leq} \llbracket x \rrbracket$.

Riemann sums

Now compute $\sum_{x_{i} \in[a, b)} c_{i} f\left(x_{i}\right) h$.

Functions with easily computable inverses

- Consider functions that are a bit tricky to compute but for which there is a "reverse function" that is much easier to compute.
- For example: computing \sqrt{x} requires computing a series and works only locally, but computing x^{2} requires only one computation and works globally.

Functions with easily computable inverses: Theorem

Theorem

Let f be a function. Let g and h be such functions that $g(f(x))=h(x), g$ is strictly monotonous. Let x be such that $f(x) \in\left[a, a+2^{k}\right)$. Let $y_{0}, y_{1}, \ldots, y_{2^{s}}$ be such that $y_{i}:=a+i \cdot 2^{k-s}$. Let $j:=\left|\left\{y_{i} \mid g\left(y_{i}\right)<h(x)\right\}\right|$. Then $f(x) \in\left[y_{j}, y_{j+1}\right)$ if g is monotonously increasing and $f(x) \in\left[y_{2^{s}-j-1}, y_{2^{s}-j}\right)$ if it is monotonously decreasing.

Brief argument

- $y_{i}:=a+i \cdot 2^{k-s}$.
- We know that $f(x) \in\left[y_{r}, y_{r+1}\right)$ for some r.

Brief argument

- $y_{i}:=a+i \cdot 2^{k-s}$.
- We know that $f(x) \in\left[y_{r}, y_{r+1}\right)$ for some r.
- All y_{i} where $i \leq r$, pass the test (i.e. $g\left(y_{i}\right) \leq h(x)$), all y_{i} where $i>r$, don't.

Brief argument

- $y_{i}:=a+i \cdot 2^{k-s}$.
- We know that $f(x) \in\left[y_{r}, y_{r+1}\right)$ for some r.
- All y_{i} where $i \leq r$, pass the test (i.e. $g\left(y_{i}\right) \leq h(x)$), all y_{i} where $i>r$, don't.
- Thus $j=\mid$ number of i that pass the test $\mid=r$.

So

- If we know that $f(\llbracket x \rrbracket) \in\left\lceil\llbracket a \rrbracket, \llbracket a+2^{k} \rrbracket\right)$ and f is as described in theorem.

So

- If we know that $f(\llbracket x \rrbracket) \in\left\lceil\llbracket a \rrbracket, \llbracket a+2^{k} \rrbracket\right)$ and f is as described in theorem.
- Compute in parallel $g\left(\llbracket y_{i} \rrbracket\right)$.

So

- If we know that $f(\llbracket x \rrbracket) \in\left\lceil\llbracket a \rrbracket, \llbracket a+2^{k} \rrbracket\right)$ and f is as described in theorem.
- Compute in parallel $g\left(\llbracket y_{i} \rrbracket\right)$.
- Compute $h(\llbracket x \rrbracket)$.

So

- If we know that $f(\llbracket x \rrbracket) \in\left\lceil\llbracket a \rrbracket, \llbracket a+2^{k} \rrbracket\right)$ and f is as described in theorem.
- Compute in parallel $g\left(\llbracket y_{i} \rrbracket\right)$.
- Compute $h(\llbracket x \rrbracket)$.
- Comprare in parallel $\llbracket c_{i} \rrbracket=\llbracket g\left(y_{i}\right) \rrbracket \stackrel{?}{\leq} \llbracket h(x) \rrbracket$

So

- If we know that $f(\llbracket x \rrbracket) \in\left\lceil\llbracket a \rrbracket, \llbracket a+2^{k} \rrbracket\right)$ and f is as described in theorem.
- Compute in parallel $g\left(\llbracket y_{i} \rrbracket\right)$.
- Compute $h(\llbracket x \rrbracket)$.
- Comprare in parallel $\llbracket c_{i} \rrbracket=\llbracket g\left(y_{i}\right) \rrbracket \stackrel{?}{\leq} \llbracket h(x) \rrbracket$
- Set $\llbracket a \rrbracket+\sum \llbracket c_{i} \rrbracket \cdot 2^{k}$ to be the answer.

2^{s} ary search

- Note that we began with knowledge that $\llbracket f(x) \rrbracket \in\left[a_{1}, a_{1}+2^{k_{1}}\right)$ and ended with much finer knowledge that $\llbracket f(x) \rrbracket \in\left[a_{2}, a_{2}+2^{k_{2}}\right)$.

2^{s} ary search

- Note that we began with knowledge that $\llbracket f(x) \rrbracket \in\left[a_{1}, a_{1}+2^{k_{1}}\right)$ and ended with much finer knowledge that $\llbracket f(x) \rrbracket \in\left[a_{2}, a_{2}+2^{k_{2}}\right)$.
- We can iterate!

2^{s} ary search

- Note that we began with knowledge that $\llbracket f(x) \rrbracket \in\left[a_{1}, a_{1}+2^{k_{1}}\right)$ and ended with much finer knowledge that $\llbracket f(x) \rrbracket \in\left[a_{2}, a_{2}+2^{k_{2}}\right)$.
- We can iterate!
- (Good if we reach bounds of parallelisation)

2^{s} ary search

- Note that we began with knowledge that $\llbracket f(x) \rrbracket \in\left[a_{1}, a_{1}+2^{k_{1}}\right)$ and ended with much finer knowledge that $\llbracket f(x) \rrbracket \in\left[a_{2}, a_{2}+2^{k_{2}}\right)$.
- We can iterate!
- (Good if we reach bounds of parallelisation)
- If we can perform m operations in parallel, then for n-bit increase in accuracy we will need $O\left(\frac{n}{m}\right)$ time.

