
Two embarrassingly parallel methods for Secure

Multiparty Computation: Point Counting

Toomas Krips, Jan Willemson

October 4, 2014

University of Tartu, Department of Mathematics and Computer
Science, STACC
Cybernetica AS

Point-Counting:Basic Idea

◮ Have a set of points.

Point-Counting:Basic Idea

◮ Have a set of points.

◮ Perform some test on every point.

Point-Counting:Basic Idea

◮ Have a set of points.

◮ Perform some test on every point.

◮ (Weighted) sum of points that pass the test is (proportional
to) our answer.

Point-Counting:Basic Idea

◮ Have a set of points.

◮ Perform some test on every point.

◮ (Weighted) sum of points that pass the test is (proportional
to) our answer.

◮ Good because round complexity very low.

Secure Multiparty Computation

◮ How to compute with private/secret/encrypted data?

◮ JxK will mean that the value of x is secret.

More precisely about our case

◮ We already have some existing protocols, but:

◮ Program flow MAY NOT depend on private data.

◮ Parallel execution very-very desirable.

Ingredients

◮ You will need the following ingredients:

Ingredients

◮ You will need the following ingredients:

◮ Ability to represent non-integer numbers (such as floats or
fixes) and on them do:

Ingredients

◮ You will need the following ingredients:

◮ Ability to represent non-integer numbers (such as floats or
fixes) and on them do:

◮ Cheap addition of private values.

◮ Comparison JcK =

{

0 if JxK ≤ JyK

1 if JxK > JyK

◮ Multiplication of private and public values.

◮ The ”test” that is applied to all points.

Riemann sums

Want to compute
∫ JxK
a

f (t)dt, JxK is secret, we know x ∈ [a, b).

ba JxK

f (t)

Riemann sums

In non-secret world use rectangle formula. For a small h, compute
xi = a + i · h for xi ∈ [a, x) and let answer be

∑

i f (xi)h.

ba x

f (t)

x1 x2 x3 x4 x5 x6 x7

Riemann sums

Similar solution for secret world. Let xi = a+ i · h for xi ∈ [a, b)

and securely compute JciK = xi
?
≤ JxK.

JxKx1 x2 x3 x4 x5 x6 x7 x8 x9

Riemann sums

Now compute
∑

xi∈[a,b)
ci f (xi)h.

ba x

f (t)

x1 x2 x3 x4 x5 x6 x7 x8 x9

Functions with easily computable inverses

◮ Consider functions that are a bit tricky to compute but for
which there is a ”reverse function” that is much easier to
compute.

◮ For example: computing
√
x requires computing a series and

works only locally, but computing x2 requires only one
computation and works globally.

Functions with easily computable inverses: Theorem

Theorem
Let f be a function. Let g and h be such functions that

g(f (x)) = h(x), g is strictly monotonous. Let x be such that

f (x) ∈ [a, a + 2k). Let y0, y1, . . . , y2s be such that

yi := a + i · 2k−s . Let j := |{yi |g(yi) < h(x)}|. Then
f (x) ∈ [yj , yj+1) if g is monotonously increasing and

f (x) ∈ [y2s−j−1, y2s−j) if it is monotonously decreasing.

Brief argument

◮ yi := a + i · 2k−s .

◮ We know that f (x) ∈ [yr , yr+1) for some r .

Brief argument

◮ yi := a + i · 2k−s .

◮ We know that f (x) ∈ [yr , yr+1) for some r .

◮ All yi where i ≤ r , pass the test (i.e. g(yi) ≤ h(x)), all yi
where i > r , don’t.

Brief argument

◮ yi := a + i · 2k−s .

◮ We know that f (x) ∈ [yr , yr+1) for some r .

◮ All yi where i ≤ r , pass the test (i.e. g(yi) ≤ h(x)), all yi
where i > r , don’t.

◮ Thus j = |number of i that pass the test| = r .

So

◮ If we know that f (JxK) ∈ [JaK, Ja+ 2kK) and f is as described
in theorem.

So

◮ If we know that f (JxK) ∈ [JaK, Ja+ 2kK) and f is as described
in theorem.

◮ Compute in parallel g(Jyi K).

So

◮ If we know that f (JxK) ∈ [JaK, Ja+ 2kK) and f is as described
in theorem.

◮ Compute in parallel g(Jyi K).

◮ Compute h(JxK).

So

◮ If we know that f (JxK) ∈ [JaK, Ja+ 2kK) and f is as described
in theorem.

◮ Compute in parallel g(Jyi K).

◮ Compute h(JxK).

◮ Comprare in parallel Jci K = Jg(yi)K
?
≤ Jh(x)K

So

◮ If we know that f (JxK) ∈ [JaK, Ja+ 2kK) and f is as described
in theorem.

◮ Compute in parallel g(Jyi K).

◮ Compute h(JxK).

◮ Comprare in parallel Jci K = Jg(yi)K
?
≤ Jh(x)K

◮ Set JaK +
∑

Jci K · 2k to be the answer.

2sary search

◮ Note that we began with knowledge that
Jf (x)K ∈ [a1, a1 + 2k1) and ended with much finer knowledge
that Jf (x)K ∈ [a2, a2 + 2k2).

2sary search

◮ Note that we began with knowledge that
Jf (x)K ∈ [a1, a1 + 2k1) and ended with much finer knowledge
that Jf (x)K ∈ [a2, a2 + 2k2).

◮ We can iterate!

2sary search

◮ Note that we began with knowledge that
Jf (x)K ∈ [a1, a1 + 2k1) and ended with much finer knowledge
that Jf (x)K ∈ [a2, a2 + 2k2).

◮ We can iterate!

◮ (Good if we reach bounds of parallelisation)

2sary search

◮ Note that we began with knowledge that
Jf (x)K ∈ [a1, a1 + 2k1) and ended with much finer knowledge
that Jf (x)K ∈ [a2, a2 + 2k2).

◮ We can iterate!

◮ (Good if we reach bounds of parallelisation)

◮ If we can perform m operations in parallel, then for n-bit
increase in accuracy we will need O(n

m
) time.

