Two embarrassingly parallel methods for Secure
Multiparty Computation: Point Counting

Toomas Krips, Jan Willemson

October 4, 2014

University of Tartu, Department of Mathematics and Computer
Science, STACC
Cybernetica AS

Point-Counting:Basic ldea

» Have a set of points.

Point-Counting:Basic ldea

» Have a set of points.

» Perform some test on every point.

Point-Counting:Basic ldea

» Have a set of points.
» Perform some test on every point.

» (Weighted) sum of points that pass the test is (proportional
to) our answer.

Point-Counting:Basic ldea

» Have a set of points.

v

Perform some test on every point.

v

(Weighted) sum of points that pass the test is (proportional
to) our answer.

v

Good because round complexity very low.

Secure Multiparty Computation

» How to compute with private/secret/encrypted data?

» [x] will mean that the value of x is secret.

More precisely about our case

» We already have some existing protocols, but:
» Program flow MAY NOT depend on private data.

» Parallel execution very-very desirable.

Ingredients

> You will need the following ingredients:

Ingredients

> You will need the following ingredients:

» Ability to represent non-integer numbers (such as floats or
fixes) and on them do:

Ingredients

> You will need the following ingredients:

» Ability to represent non-integer numbers (such as floats or
fixes) and on them do:

» Cheap addition of private values.
0 if <
» Comparison [c] = I b = Il
1 if [x] > [v]
» Multiplication of private and public values.
» The "test” that is applied to all points.

Riemann sums

Want to compute fa[[xﬂ f(t)dt, [x] is secret,

we know x € [a, b).
f(t)

Riemann sums

In non-secret world use rectangle formula. For a small h, compute

xi =a+i-hforx; € [a,x) and let answer be >, f(x;)h.

DA

Riemann sums

Similar solution for secret world. Let x; = a+ i - h for x; € [a, b)

?
and securely compute [¢;] = x; < [x].

X1 X2 X3 Xg X5 Xe Xy[x]

Riemann sums

Now compute >, [,) Cif(xi)h

Functions with easily computable inverses

» Consider functions that are a bit tricky to compute but for
which there is a "reverse function” that is much easier to
compute.

» For example: computing /x requires computing a series and
works only locally, but computing x? requires only one
computation and works globally.

Functions with easily computable inverses: Theorem

Theorem

Let f be a function. Let g and h be such functions that
g(f(x)) = h(x), g is strictly monotonous. Let x be such that
f(x) € [a,a+25). Let yo,y1,...,yss be such that
yii=a+i-2k7s. Let j:= |{yilg(yi) < h(x)}|. Then

f(x) € [yj,¥j+1) if g is monotonously increasing and

f(x) € [yos—j—1, yos—j) if it is monotonously decreasing.

Brief argument

> yii=ati-2ks
» We know that f(x) € [y, yr+1) for some r.

Brief argument

> yii=a+i-2ks.
» We know that f(x) € [y, yr+1) for some r.

» All y; where i < r, pass the test (i.e. g(y;) < h(x)), all y;
where i > r, don't.

Brief argument

v

yii=a+i-2k=s,

v

We know that f(x) € [y, yr+1) for some r.

v

All y; where i < r, pass the test (i.e. g(y;) < h(x)), all y;
where i > r, don't.

v

Thus j = |[number of / that pass the test| = r.

So

» If we know that f([x]) € [[a],[a + 2X]) and f is as described
in theorem.

So

» If we know that f([x]) € [[a],[a + 2X]) and f is as described
in theorem.

» Compute in parallel g([yi]).

So

» If we know that f([x]) € [[a],[a + 2X]) and f is as described
in theorem.

» Compute in parallel g([yi]).
» Compute h([x]).

So

v

v

v

v

If we know that f([x]) € [[a],[a + 2*]) and f is as described
in theorem.

Compute in parallel g([yi])-
Compute h([x]).

Comprare in parallel [¢;] = [g(vi)] ; [h(x)]

So

v

v

v

v

v

If we know that f([x]) € [[a],[a + 2*]) and f is as described
in theorem.

Compute in parallel g([yi])-
Compute h([x]).

?
Comprare in parallel [¢;] = [g(yi)] < [h(x)]
Set [a] + > [ci] - 2% to be the answer.

2°ary search

> Note that we began with knowledge that
[f(x)] € [a1,a1 + 2%) and ended with much finer knowledge
that [f(x)] € [a2, a2 + 2%2).

2°ary search

> Note that we began with knowledge that
[f(x)] € [a1,a1 + 2%) and ended with much finer knowledge
that [f(x)] € [a2, a2 + 2%2).

» We can iterate!

2°ary search

> Note that we began with knowledge that
[f(x)] € [a1,a1 + 2%) and ended with much finer knowledge
that [f(x)] € [a2, a2 + 2%2).

> We can iteratel!

» (Good if we reach bounds of parallelisation)

2°ary search

v

Note that we began with knowledge that
[f(x)] € [a1,a1 + 2%) and ended with much finer knowledge
that [f(x)] € [a2, a2 + 2%2).

We can iterate!

v

v

(Good if we reach bounds of parallelisation)

v

If we can perform m operations in parallel, then for n-bit
increase in accuracy we will need O(%) time.

