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Motivation
• Permutation codes (for error correction) can be used to
detect and correct errors in data storage devices with rank
modulation and also in power-line communications.

• In a flash memory information can be stored as electric
charges of different size.
• Suppose one storage unit consists of n cells. Then
information is stored as a permutation on n elements: the
relative sizes of the charges in the cells are what matter.

• In the paradigm of rank modulation we are allowed to
increase the charge of one cell so that its charge becomes
the largest: “bring it to the top”.

• There are Gray codes (for listing permutations) using
rank modulation for the set Sn of all permutations, i.e.
we can go through all the different permutations in order,
using only rank modulation. [A. Jiang , R. Mateescu , M.
Schwartz , J. Bruck 2009]



Permutations and groups

• Let us denote [n] := {1, 2, ..., n}.
• A permutation (or re-ordering or ‘shuffle’) on n elements
is a bijective mapping σ : [n]→ [n].

permutation two-line one-line disjoint cycle decomposition

notation notation notation

1 2 3 4 5 6 123456

↓ ↓ ↓ ↓ ↓ ↓ 146235 (1)(24)(365)

1 4 6 2 3 5 146235

• Permutations on n elements form a group under
composition, called Sn. Let us write στ for τ ◦ σ.



Metric spaces

• A metric space (S , d) is a set S together with a
(distance) metric d : S × S → R+ ∪ {0} which satisfies:
• ∀x , y ∈ S : d(x , y) = d(y , x) (symmetry)
• d(x , y) = 0 if and only if x = y (not a ‘pre-metric’)
• and ∀x , y , z ∈ S : d(x , y) + d(y , z) ≥ d(x , z) (triangle
inequality)

• Any subset T ⊆ S is still a metric space with the same
metric.

• Here we are concerned with metrics which take integer
values.



Codes

• A code of distance d in a metric space S is a subset
T ⊆ S in which all pairwise distances are at least d .

• Codes can be used for error detection and correction in
data transmission or storage in which case we would also
have to define encoding and decoding and what it means
to introduce errors, i.e. a channel. I will not do so in this
talk.

• If S := Sn is endowed with a metric we call a code in this
space a permutation code.

• The elements of T are called codewords. The weight of a
codeword is its distance to zero, or, in the case of
permutation codes to the identity permutation e = 12...n.



Classes of metrics

• A metric d is a graph metric if there is a (simple) graph
with vertex set S such that d is the distance in the graph,
i.e. the number of edges on the shortest path between
two vertices.

• If S is a group and X ⊆ S is a generating set,
i.e. < X ∪ X−1 > = S where X−1 := {x−1|x ∈ X} then
the Cayley graph is the graph with vertex set S with an
edge between s ∈ S and t ∈ S if and only if there is an
x ∈ X ∪ X−1 with s = tx , or, alternatively, s = xt.

• If S is a group then d is a group metric if it is the graph
metric for a Cayley graph on S .



The Hamming metric

• If S = S1 × S2 × ...× Sn is a Cartesian product of sets
then the Hamming metric (or Hamming distance)
between s, t ∈ S is dH(s, t) = #{i | si 6= ti}.

• It is in general not a graph metric.
• If S = Sn ⊆ [n]n is the group of permutations of n
elements then the Hamming distance between s and t is
equal to n minus the number of 1-cycles in the
cycle-representation of s−1t.

• Example: 1342 and 2314 have distance 3: they differ in
positions 1, 3 and 4.



Some concrete metrics

• Now let S := Sn, the permutation group on n elements
and consider permutations in the one-line notation.

• The Kendall τ metric dτ between s, t ∈ S is the minimum
number of swaps of consecutive symbols in s to obtain t.

• Example: 1342 and 2314 have distance 4:

1342→ 1324→ 1234→ 2134→ 2314

• The cyclic Kendall τ metric d c
τ is similar but we can also

swap the first and last symbol.
• Example: 1342 and 2314 have distance 2:

1342→ 2341→ 2314



Some concrete metrics
• The transposition metric dt is similar, except we are
allowed to swap any two symbols. The transposition
distance between s an t is equal to n minus the number
of cycles in the cycle-representation of s−1t.

• Example: 1342 and 2314 have distance 2:

1342→ 4312→ 2314

• The Ulam metric dU counts the minimum number of
times we need to pick up a symbol and insert it
somewhere else to obtain t starting with s. It is equal to
n minus the length of the longest common subsequence.

• Example: the distance of 1342 and 2314 is 4− 2 = 2: the
length of the longest common subsequence is 2: the
subsequence 14 works: 1342 and 2314 but also 34 works:
1342 and 2314



Properties of the metrics

• It is easy to check they are all metrics.
• They are all graph metrics (except the Hamming metric)
since they count the number of elementary operations.

• All the permutation metrics discussed so far are
left-invariant meaning d(us, ut) = d(s, t) for all
u, s, t ∈ Sn. In other words, they are invariant under
re-naming the symbols in the same way.

• The Hamming and transposition metrics are also
right-invariant meaning d(su, tu) = d(s, t) for all
u, s, t ∈ Sn. In other words, the are invariant under
re-ordering the symbols in the same way.



More properties of the metrics

• All the metrics discussed, except the Hamming metric,
are even actually group metrics (under multiplication on
the left) with the generating set being respectively
• dτ : 2-cycles of form (i , i + 1)
• d c

τ : 2-cycles of form (i , i + 1) and the 2-cycle (n, 1)
• dt : all 2-cycles
• dU : cycles of form (i , i + 1, ..., j − 1, j)



Computation of distances in these metrics

• Multiplication of permutations and taking the inverse is
easy.

• It is also easy to convert between the one-line and cycle
notations.

• The Hamming and transposition distances are easy to see
from one of these notations.

• Question: how to efficiently compute the cyclic Kendall τ
distance? I don’t know...



Computation of the Kendall τ distance

• The Kendall τ distance of s and t is relatively easy to
compute from the one-line notation of s−1t:

• Notice that it is equal to the sum, over i = 1, 2, ..., n, of
the number of symbols j < i which lie on the wrong side,
i.e. to the right of i . This is also called the number of
inversions of the permutation s−1t.

• The number of inversions can be found in time
O(n log n). Question: can we do better for permutations?

• One approach would be divide-and-conquer, a merge sort
with additional information: find the number of inversions
in the left and right half of the permutation, sort the
halves, and finally merge the halves, keeping track of the
decrease in the total number of inversions on inserting an
element.



Computation of the Ulam distance

• To compute the Ulam distance of s and t we have to find
the length of the longest increasing subsequence in the
one-line notation of s−1t, (or, equivalently, just find the
longest common subsequence of s and t):

• This can be done by a dynamic programming approach
which is O(n2), however, there is also an O(n log n)
algorithm attributed to Knuth. Question: can we do
better for permutations?



Sharply transitive action and the Hamming distance

• A subgroup G ≤ Sn acts on the set [n] which just means
that g [[n]] = [n] and g(h(i)) = gh(i) and e(i) = i for all
g , h ∈ G and all i ∈ [n] and where e is the identity
permutation 12...n.

• The action of G is transitive if every i ∈ [n] can be
mapped to any other j ∈ [n] by some element g ∈ G .

• The group G acts k-transitively if every ordered k-tuple
of distinct numbers from [n] can be mapped to any other
ordered k-tuple of distinct numbers (the action is
coordinate-wise).

• Finally, G acts sharply k-transitively if for every two
ordered k-tuples (which could be the same) there is
exactly one g ∈ G mapping one to the other.



Sharply transitive action and the Hamming distance

• Notice that a sharply k-transitive group G ≤ Sn is a
permutation code of Hamming distance n − k + 1.

• How do we see it?
• The group G acts on Sn ⊆ [n]n by left multiplication.
There are n coordinates and the action is
coordinate-wise.

• Since the action is sharp, a k-tuple is mapped to the
same k-tuple by only the identity permutation e ∈ G .
Since G also acts on G ⊆ Sn with the same action (the
action preserves G ), we have that two different elements
of G do not have more than k − 1 coordinates in
common. That is, the Hamming distance is at least
n − k + 1.



Sharply transitive action and the Hamming distance

• But there are very few sharply k-transitive groups and for
only k ≤ 5.

• Important examples include some Mathieu groups (they
are some of the sporadic finite groups), AGL(1,Fq) and
PGL(2,Fq).

• AGL(1,Fq) and PGL(2,Fq) correspond to respectively
linear transformations ax + b in Fq and projective
fractional transformations (ax + b)/(cx + d) in Fq.



Ulam distance

• An (n, d) code: every codeword has n symbols and the
minimum distance is d .

• If we puncture an (n, d) code, i.e. delete one coordinate
then we have an (n − 1, d − 1) code of the same number
of codewords. This is valid for classical codes but also for
Ulam codes.

• The Singleton bound is an upper bound on the size
(number of codewords) based on this observation.

• It turns out that at least for some small values of n and d
there are Ulam codes which satisfy the Singleton bound
with equality – i.e. the codes are optimal.



Ulam distance

• The following is what we know from computer
experiments about the existence of optimal (n, d) Ulam
codes:

d : 2 3 4 5 6 7

n

4 yes

5 yes no

6 yes yes no

7 yes no no no

8 ? ? no no no

9 ? ? ? no no no



Ulam distance
• Here is our knowledge about the maximum sizes of (n, d)
Ulam codes:

d : 2 3 4 5 6 7

n

4 6

5 24 4

6 120 24 4

7 720 ≥ 58 ≥ 12 4

and and

< 120 < 24

8 ? ? < 120 < 24 4

9 ? ? ? < 120 < 24 2



Ulam distance
• To computer experiment, we constructed the graph on
vertex set Sn with an edge if and only if the
corresponding vertices are at least a distance d away.

• Now we needed to find a clique of the maximum size.
• We observed a colouring of the graph for Ulam codes
such that the existence of an optimal code becomes
equivalent with the property that the clique number of
the graph is equal to the chromatic number.

• To have an optimal code, we need to pick exactly one
vertex from each colour class such that they form a clique.

• For a non-optimal code it is enough to pick at most one
vertex from each colour class.

• Finally, trying to avoid exhaustive search, we could also
prove upper bounds on code size in an easier way by
solving certain integer linear programs. Potentially also
semi-definite programs could be of use.



Thank you!

Paldies! Aitäh!


