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Quantum State of physical systems ...

Pure State: |ψ〉 ∈ Cn

I Qubit: |ψ〉 = a|0〉+ b|1〉 ∈ C2;
a, b ∈ C; |a|2 + |b|2 = 1.

I Two-qubits: |ψ〉 = a|00〉+ b|01〉+ c |10〉+ d |11〉 ∈ C4;
a, b, c , d ∈ C, |a|2 + |b|2 + |c|2 + |d |2 = 1.

Mixed State ∈ Cn

I A mixture of pure states {|ψi 〉, pi} where |ψi 〉 ∈ Cn

I Density matrix: A more compact representation is
ρ =

∑
i pi |ψi 〉〈ψi |, where Tr(ρ)=1 and ρ ≥ 0.

I A mixed state ρ can be prepared in many different ways but
physically they are all same.



Quantum Measurement / Quantum Observables)...

I Outcome of measurement on a quantum system in general is
probabilistic.

I Quantum measurement on any state |ψ〉 can be expressed as
an Hermitian operator Ô .

I Possible results of measurement are eigenvalues i of Ô.

I Post measurement state after getting an outcome i is |i〉: the
corresponding eigenvectors of Ô.

I Born-Rule: Probability of getting i-th outcome is given by
P(i) = |〈ψ|i〉|2.

I Example: Measuring Ô = |0〉〈0| − |1〉〈1| on a single qubit
state a|0〉+ b|1〉 results in two possible outcome, +1 with
probability |a|2 and −1 with probabilty |b|2; corresponding
post measurement state is |0〉 and |1〉 respectively.



Quantum Entanglement

In quantum mechanics state of a composite system constituting of
two or more subsystems can be entangled.

Consider a two qubit bi-partite system

I One qubit is with Alice and other qubit is with Bob.

I Then state of composite system |ψAB〉 ∈ C2 ⊗ C2.

I If |ψAB〉 6= |ψA〉 ⊗ |ψB〉 for any |ψA〉, |ψB〉 ∈ C2 then such
states are called entangled states.

I Singlet state: |ψ−〉 = 1√
2

(|01〉 − |10〉) is an entangled state.

A two-qubit mixed entangled state

Werner-State: Is a mixture of |ψ−〉 and White noise I
4

ρW = p|ψ−〉〈ψ−|+ (1− p) I
4 where 0 ≤ p ≤ 1

Werner states are entangled for p > 1
3



Entanglement and Nonlocality

Suppose Alice and Bob, located far apart, share Singlet state |ψ−〉.
Now, if they measure their respective subsystems, then their local
measurement outcomes can be non-classically correlated. This
can also be true for many other entangled states.

Non-classical Correlations

I Let Alice’s (Bob’s) measurement be A (B) with possible
outcomes a(b) ∈ {−1,+1}.

I Quantum Mechanics: PQ(a, b|A,B) = Tr(|ψ−〉〈ψ−|A⊗ B).

I Local Hidden Vaiables (LHV): If Alice and Bob by
pre-sharing some local variable λi and without later
communication can simulate Quantum probabilities, then we
get a LHV model

PQ(a, b|A,B) =

∫
Λ
dλD(λ) P(a|A, λ) P(b|B, λ)



A Nonlocality Witness

Suppose Alice (Bob) randomly choose to measure {A,A′}
({B,B ′}) and possible outcome of their measurement ∈ {−1,+1}.
Then if there is some LHV model for their measurement statistics
then the following constraint must be satisfied:

Bell-CHSH inequality



Motivation...

Entanglement 6= Nonlocality

I Pure singlet state show maximum Bell-violation for
appropriately chosen ideal projective measurements.

I Can all entangled states generate some non-classical
(nonlocal) correlation?

I Werner’s result—Projective measurements on mixed
entangled states ρAB = p|ψ−〉〈ψ−|+ (1− p) I

4 where
1
3 < p ≤ 1

2 cannot generate nonlocal correlation.

I Werner showed that, above mixed (impure) entangled states
can be locally simulated by two spatially separated parties by
pre-sharing classical correlations (Local Hidden Varibles).

I We have studied this problem from the opposite direction i.e.
rather than weakening the state we restrict the class of
observable to provide local model for the pure singlet state.



General quantum observables

I Generalized quantum observables are described by positive
operator valued measure (POVM).

I POVM is a collection of selfadjoint operators {Ei} acting on
state space such that:
(i) 0 ≤ Ei ≤ I for all i ,
(ii)

∑
i Ei = I , where i ∈ {1, 2, ..., n}.

I Measurement {Ei} on a quantum state ρ results in any one of
the n possible outcomes; probability of occurrence of i-th
outcome (termed as clicking of i-th effect) is Tr [ρEi ].



General two-outcome measurement on a qubit
Let unit vector â = (a1, a2, 33) ∈ R3 and â ·~σ = a1σ1 + a2σ2 + a3σ3

where σi are Pauli matrices: σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
POVM {E,I-E} acting on C2

P (1,1)

μ

O

I

(0,0) (2,0)U (1,0)

a0

E =
1

2
[a0I + µâ · ~σ] (1)

0 ≤ a0 ≤ 2 (2)

0 ≤ µ ≤ min{a0, 2− a0} (3)

I Point P(1, 1) correspond to an ideal projective measurement.

I Measurements corresponding to points on the dashed line UP
can be physically interpreted as unsharp-spin property of a
spin- 1

2 system (P. Busch, 1986).



Singlet statistics for general two-outcome measurements
I Suppose, two spatially separated parties Alice and Bob share

one qubit each from a singlet state

|ψ−〉 =
1√
2

(|01〉 − |10〉)

I Let Alice’s (Bob’s) observable be a most general two-outcome
POVM EA[a0, µA, â] (EB [b0, µB , b̂])

Joint outcome probabilities

PAB(yes, yes) =
1

4
[a0b0 − µAµB â · b̂]

PAB(yes, no) =
1

4
[a0(2− b0) + µAµB â · b̂]

PAB(no, yes) =
1

4
[(2− a0)b0 + µAµB â · b̂]

PAB(no, no) =
1

4
[(2− a0)(2− b0)− µAµB â · b̂]



LHV models for singlet statistics

I There can be no local hidden variable model for pure singlet
state statistics generated by ideal projective measurements
(for suitable choice of measurement directions Bell-CHSH
inequality is violated)

I Our motivation is to explore possibilities of local hidden
variable model for the pure singlet state by restricting
(deviating from ideal projective measurements) the
parameters of a two-outcome POVM measurement.

I We give two forms of LHV models for singlet state under
certain restrictions on parameters of two outcome POVMs.

I In both the models vectors λ̂ = (sin θ cosφ, sin θ sinφ, cos θ)
uniformly distributed over unit sphere are local variables
pre-shared between Alice and Bob.



A fully biased model Mfb

Restriction on observable

I Alice: No restriction

I Bob: µB ≤ 1
2 min{b0, 2− b0}

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

a0

μA

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

b0

μB

M (1,1/2)

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

a0

μA

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

b0

μB

M (1,1/2)

Model

I Alice: PA
λ̂

(yes) = a0

2 + 1
2µA cosα

I Bob: PB
λ̂

(yes) = b0

2 − µB sgn(cosβ)

I α (β) is angle with pre-shared variable λ̂

I sgn(x) = +1 (−1) for x ≥ 0 (x < 0)



A fully symmetric model Mfs

Restriction on observable

I Alice: µA ≤ 1√
2

min{a0, 2− a0}
I Bob: µB ≤ 1√

2
min{b0, 2− b0}

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

a0

μA

M(1,1/√2) 

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

b0

μB

M(1,1/√2) 

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

a0

μA

M(1,1/√2) 

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

b0

μB

M(1,1/√2) 

Model

I Alice: PA
λ̂

(yes) = a0

2 + 1√
2
µA cosα

I Bob: PB
λ̂

(yes) = b0

2 −
1√
2
µB sgn(cosβ)

I α (β) is angle with pre-shared variable λ̂

I sgn(x) = +1 (−1) for x ≥ 0 (x < 0)



Joint outcome probabilities from Mfb and Mfs

I

PAB
lhv (∗, ∗) =

∫
ρ(λ̂) PA

λ̂
(∗) PB

λ̂
(∗) d λ̂

reproduces the singlet statistics.

I ρ(λ̂) = 1
4π (λ̂ uniformly distributed over unit sphere)



Measure of restriction on observable
By considering that observables of Alice and Bob are picked from a
uniform distribution of all possible two-outcome POVMs, a
measure r for % restriction on observables of any of the two
parties can be defined as:

r =

[
1− Area (MOI)

Area (POI)

]
× 100

I In the LHV model Mfb (Mfs), there is 0% (29.3%) restriction
on Alice’s observables wherelse Bob’s observables are
restricted by 50% (29.3%)



A general class of LHV models {Mκ : κ ≥ 0}

Restriction on observable

I Alice: µA ≤ κ min{a0, 2− a0}
I Bob: µB ≤ 1

2κ min{b0, 2− b0}

Model

I Alice: PA
λ̂

(yes) = a0
2 + 1

2κµA cosα

I Bob: PB
λ̂

(yes) = b0
2 − κµB sgn(cosβ)



% restriction on observables for models Mκ

I The subclass {Mκ : κ ∈ [1/2, 1]} contains tight LHV models
in as they can capture any varying degree of restrictions on
Alice’s and Bob’s observables.



Conclusion

I Simulation of quantum statistics for Werner state by LHV has
been an interesting area for understanding the physics of
entanglement

I We have studied the cases where LHV simulation is possible
for singlet state.

I We find the optimal set of two outcomes observable for which
singlet simulation by LHV is possible under the suggested
protocol.

I It will be interesting to study whether the set can be enlarged
with respect to different LHV model



Thanks! Questions...
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