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Recursive Sets

Definition

A ⊆ N, χA (x) =

{
1, if x ∈ A

0, if x /∈ A

Definition

A set A is recursive iff there is a Turing machine (an algorithm)
that computes χA(x).

fx y = χA(x)
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Frequency Computation

Definition (Rose, 1960)

A set A is (m, n)-computable iff there is a total recursive function
f which assigns to all distinct inputs x1, x2, . . . , xn a binary vector
(y1, y2, . . . , yn) such that at least m of the equations
χA(x1) = y1, χA(x2) = y2, . . . , χA(xn) = yn hold.
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yi = χA(xi )
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Theorem (Trakhtenbrot, 1964)

If m
n > 1

2 then every (m, n)-computable set is recursive.

If m
n ≤

1
2 then there is a continuum of (m, n)-computable sets.
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Choose an infinite branch T .
x ∈ AT iff x is on the branch T .

AT = {1, 2, 5, 11, . . . }
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Choose an infinite branch T .
x ∈ AT iff x is on the branch T .

AT = {1, 2, 5, 11, . . . }

(1, 2)-algorithm receives 2
different numbers and on at least
one of them has to give the
correct answer.
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Algorithm

Assume x1 < x2.

If there is a branch which
contains both x1 and x2

then output:
x1 ∈ AT , x2 /∈ AT .

Otherwise output:
x1 /∈ AT , x2 /∈ AT .
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The algorithm does not
depend on T .

T can be chosen in a
continuum different ways.

The algorithm (1, 2)-computes
a continuum of different sets.

There are only countably many
recursive sets.
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Definition

By a structure of a finite set K we call a set of K ’s subsets S ⊆ 2K .
Assume K = {1, 2, . . . , n}.

Definition

A set A is (S ,K )-computable (or computable with a structure S)
iff there is a total recursive function f which assigns to all distinct
inputs x1, x2, . . . , xn a binary vector (y1, y2, . . . , yn) such that
∃B ∈ S ∀b ∈ B χA(xb) = yb
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Theorem

A set A is Fano-computable iff it is
recursive.

Observation
3
7 <

1
2
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Definition

By the size of a structure S ⊆ 2K we denote the size of the
smallest subset - minA∈S |A|. We call the structure size consistent

iff ¬∃K ′ ⊆ K minA′∈S
|A′∩K ′|
|K ′| > minA∈S

|A|
|K |

To avoid such cases:
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Definition

We call a structure S ⊆ 2K overlapping iff ∀A,B ∈ S A ∩ B 6= ∅.
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Theorem

If a set A is computable with an overlapping structure then A is
recursive.

Theorem (Projective plane of order q)

For any set K of size n = q2 + q + 1 where q is a prime power
there exists a size consistent overlapping structure of size q + 1.

Theorem

Every size consistent overlapping structure S ⊆ 2K has size at least√
n where n = |K |.
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Overlapping Structures

The algorithm is asked to give the correct answer on a small

fraction of inputs – O
(√

n
n

)
= O

(
1√
n

)
– (instead of

Trakhtenbrot’s 1
2 ) however only recursive set can be computed.
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Definition

We call a structure S ⊆ 2K a graph structure iff ∀A ∈ S |A| = 2.

A natural question

For which graphs G are the G -computable sets recursive?
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Recursive Graphs

Proposition

If the graph G is either a triangle C3 or a star graph Sn then every
G -computable set is recursive.
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Continuum Implying Subgraphs

Theorem

If a graph G contains as a subgraph a cycle of length 4 (C4) or two
vertex-disjoint paths of length 3 then there is a continuum of
G -computable sets, namely, every (1, 2)-computable set is also
G -computable.
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Theorem

If a graph G contains as a subgraph a cycle of length 4 (C4) or two
vertex-disjoint paths of length 3 then there is a continuum of
G -computable sets, namely, every (1, 2)-computable set is also
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Small Connected Graphs (≤ 6 vertices)
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Recent Developments

Theorem

If a graph G contains as a subgraph three vertex-disjoint paths of
length 2 then there is a continuum of G -computable sets.

1 2

3 4

5 6

Theorem

If the graph G is two vertex-disjoint paths of length 2 then every
G -computable set is recursive.
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Open Problems

Are there other size consistent non-overlapping structures of
size less than

√
n that allow only computability of recursive

sets? If so then what is the smallest possible fraction of
correct answers attainable?

For graph frequency computation obtain a complete
classification of all graphs G and classes of G -computable sets.

What other types of structures are interesting and worth
considering and what classes of sets are computable with
them?
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Thank you!
Questions?
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