Structured Frequency Algorithms

Kaspars Balodis, Jānis Iraids, Rūsiņš Freivalds

October 3, 2014

Recursive Sets

Definition

$$
A \subseteq \mathbb{N}, \quad \chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}
$$

Definition

A set A is recursive iff there is a Turing machine (an algorithm) that computes $\chi_{A}(x)$.

Frequency Computation

Definition (Rose, 1960)

A set A is (m, n)-computable iff there is a total recursive function f which assigns to all distinct inputs $x_{1}, x_{2}, \ldots, x_{n}$ a binary vector $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ such that at least m of the equations $\chi_{A}\left(x_{1}\right)=y_{1}, \chi_{A}\left(x_{2}\right)=y_{2}, \ldots, \chi_{A}\left(x_{n}\right)=y_{n}$ hold.

Frequency Computation

> Theorem (Trakhtenbrot, 1964$)$
> If $\frac{m}{n}>\frac{1}{2}$ then every (m, n)-computable set is recursive.
> If $\frac{m}{n} \leq \frac{1}{2}$ then there is a continuum of (m, n)-computable sets.

$(1,2)$-computation

(1, 2)-computation

$(1,2)$-computation

$(1,2)$-computation

Algorithm

Assume $x_{1}<x_{2}$.

- If there is a branch which contains both x_{1} and x_{2} then output: $x_{1} \in A_{T}, x_{2} \notin A_{T}$.
- Otherwise output: $x_{1} \notin A_{T}, x_{2} \notin A_{T}$.

$(1,2)$-computation

Algorithm

Assume $x_{1}<x_{2}$.

- If there is a branch which contains both x_{1} and x_{2} then output: $x_{1} \in A_{T}, x_{2} \notin A_{T}$.
- Otherwise output: $x_{1} \notin A_{T}, x_{2} \notin A_{T}$.

$(1,2)$-computation

Algorithm
 Assume $x_{1}<x_{2}$.

- If there is a branch which contains both x_{1} and x_{2} then output: $x_{1} \in A_{T}, x_{2} \notin A_{T}$.
- Otherwise output: $x_{1} \notin A_{T}, x_{2} \notin A_{T}$.

$(1,2)$-computation

Algorithm

Assume $x_{1}<x_{2}$.

- If there is a branch which contains both x_{1} and x_{2} then output: $x_{1} \in A_{T}, x_{2} \notin A_{T}$.
- Otherwise output: $x_{1} \notin A_{T}, x_{2} \notin A_{T}$.

$(1,2)$-computation

Algorithm

Assume $x_{1}<x_{2}$.

- If there is a branch which contains both x_{1} and x_{2} then output: $x_{1} \in A_{T}, x_{2} \notin A_{T}$.
- Otherwise output:

$$
x_{1} \notin A_{T}, x_{2} \notin A_{T} .
$$

$(1,2)$-computation

Algorithm

Assume $x_{1}<x_{2}$.

- If there is a branch which contains both x_{1} and x_{2} then output: $x_{1} \in A_{T}, x_{2} \notin A_{T}$.
- Otherwise output:

$$
x_{1} \notin A_{T}, x_{2} \notin A_{T} .
$$

$(1,2)$-computation

The algorithm does not depend on T.
T can be chosen in a continuum different ways.

The algorithm (1, 2)-computes a continuum of different sets.

There are only countably many recursive sets.

Structured Frequency Computation

Definition

By a structure of a finite set K we call a set of K 's subsets $S \subseteq 2^{K}$. Assume $K=\{1,2, \ldots, n\}$.

Definition

A set A is (S, K)-computable (or computable with a structure S) iff there is a total recursive function f which assigns to all distinct inputs $x_{1}, x_{2}, \ldots, x_{n}$ a binary vector $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ such that $\exists B \in S \forall b \in B \chi_{A}\left(x_{b}\right)=y_{b}$

Fano Frequency Computation

Fano Frequency Computation

Theorem

A set A is Fano-computable iff it is recursive.

Observation

$\frac{3}{7}<\frac{1}{2}$

Some Properties of Fano structure

Definition

By the size of a structure $S \subseteq 2^{K}$ we denote the size of the smallest subset $-\min _{A \in S}|A|$. We call the structure size consistent iff $\neg \exists K^{\prime} \subseteq K \min _{A^{\prime} \in S} \frac{\left|A^{\prime} \cap K^{\prime}\right|}{\left|K^{\prime}\right|}>\min _{A \in S} \frac{|A|}{|K|}$

To avoid such cases:

Some Properties of Fano structure

Definition

We call a structure $S \subseteq 2^{K}$ overlapping iff $\forall A, B \in S A \cap B \neq \emptyset$.

Overlapping Structures

Theorem

If a set A is computable with an overlapping structure then A is recursive.

Theorem (Projective plane of order q)

For any set K of size $n=q^{2}+q+1$ where q is a prime power there exists a size consistent overlapping structure of size $q+1$.

Theorem

Every size consistent overlapping structure $S \subseteq 2^{K}$ has size at least \sqrt{n} where $n=|K|$.

Overlapping Structures

The algorithm is asked to give the correct answer on a small fraction of inputs $-O\left(\frac{\sqrt{n}}{n}\right)=O\left(\frac{1}{\sqrt{n}}\right)$ - (instead of Trakhtenbrot's $\frac{1}{2}$) however only recursive set can be computed.

Graph Structures

Definition

We call a structure $S \subseteq 2^{K}$ a graph structure iff $\forall A \in S|A|=2$.

A natural question

For which graphs G are the G-computable sets recursive?

Recursive Graphs

Proposition

If the graph G is either a triangle C_{3} or a star graph S_{n} then every G-computable set is recursive.

Continuum Implying Subgraphs

Theorem

If a graph G contains as a subgraph a cycle of length $4\left(C_{4}\right)$ or two vertex-disjoint paths of length 3 then there is a continuum of G-computable sets, namely, every $(1,2)$-computable set is also G-computable.

Continuum Implying Subgraphs

Theorem

If a graph G contains as a subgraph a cycle of length $4\left(C_{4}\right)$ or two vertex-disjoint paths of length 3 then there is a continuum of G-computable sets, namely, every $(1,2)$-computable set is also G-computable.

Small Connected Graphs (≤ 6 vertices)

Recent Developments

Theorem

If a graph G contains as a subgraph three vertex-disjoint paths of length 2 then there is a continuum of G-computable sets.

Theorem

If the graph G is two vertex-disjoint paths of length 2 then every G-computable set is recursive.

Small Connected Graphs (≤ 6 vertices)

Generalizations

Generalizations

only recursive sets continumm ol setsu

Open Problems

Open Problems

- Are there other size consistent non-overlapping structures of size less than \sqrt{n} that allow only computability of recursive sets? If so then what is the smallest possible fraction of correct answers attainable?
- For graph frequency computation obtain a complete classification of all graphs G and classes of G-computable sets.
- What other types of structures are interesting and worth considering and what classes of sets are computable with them?

Thank you! Questions?

