Structured Frequency Algorithms

Kaspars Balodis, Jānis Iraids, Rūsiņš Freivalds

October 3, 2014

イロト イヨト イヨト イヨト

Recursive Sets Frequency Computation (1, 2)-computation

Recursive Sets

Definition

$$A \subseteq \mathbb{N}, \quad \chi_A(x) = egin{cases} 1, & ext{if } x \in A \ 0, & ext{if } x \notin A \end{cases}$$

Definition

A set A is recursive iff there is a Turing machine (an algorithm) that computes $\chi_A(x)$.

$$x \longrightarrow f \longrightarrow y = \chi_A(x)$$

イロン イヨン イヨン イヨン

Recursive Sets Frequency Computation (1, 2)-computation

Frequency Computation

Definition (Rose, 1960)

A set A is (m, n)-computable iff there is a total recursive function f which assigns to all distinct inputs x_1, x_2, \ldots, x_n a binary vector (y_1, y_2, \ldots, y_n) such that at least m of the equations $\chi_A(x_1) = y_1, \chi_A(x_2) = y_2, \ldots, \chi_A(x_n) = y_n$ hold.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

→ Ξ → ...

Recursive Sets Frequency Computation (1, 2)-computation

Frequency Computation

Theorem (Trakhtenbrot, 1964)

If $\frac{m}{n} > \frac{1}{2}$ then every (m, n)-computable set is recursive.

If $\frac{m}{n} \leq \frac{1}{2}$ then there is a continuum of (m, n)-computable sets.

・ロト ・回ト ・ヨト ・ヨト

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

Э

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

Choose an infinite branch T. $x \in A_T$ iff x is on the branch T.

イロン イヨン イヨン イヨン

3

$$A_T = \{1, 2, 5, 11, \dots\}$$

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

Choose an infinite branch T. $x \in A_T$ iff x is on the branch T.

 $A_T = \{1, 2, 5, 11, \dots\}$

(1,2)-algorithm receives 2 different numbers and on at least one of them has to give the correct answer.

イロン イヨン イヨン イヨン

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

Algorithm

Assume $x_1 < x_2$.

 If there is a branch which contains both x₁ and x₂ then output:

$$x_1 \in A_T$$
, $x_2 \notin A_T$.

イロン イヨン イヨン イヨン

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

Algorithm

Assume $x_1 < x_2$.

 If there is a branch which contains both x₁ and x₂ then output:

$$x_1 \in A_T$$
, $x_2 \notin A_T$.

イロン イヨン イヨン イヨン

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

Algorithm

Assume $x_1 < x_2$.

• If there is a branch which contains both x_1 and x_2 then output:

$$x_1 \in A_T$$
, $x_2 \notin A_T$.

イロン イヨン イヨン イヨン

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

Algorithm

Assume $x_1 < x_2$.

• If there is a branch which contains both x_1 and x_2 then output:

$$x_1 \in A_T$$
, $x_2 \notin A_T$.

イロン イヨン イヨン イヨン

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

Algorithm

Assume $x_1 < x_2$.

• If there is a branch which contains both x_1 and x_2 then output:

$$x_1 \in A_T$$
, $x_2 \notin A_T$.

イロン イヨン イヨン イヨン

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

Algorithm

Assume $x_1 < x_2$.

• If there is a branch which contains both x_1 and x_2 then output:

$$x_1 \in A_T$$
, $x_2 \notin A_T$.

イロン イヨン イヨン イヨン

Recursive Sets Frequency Computation (1, 2)-computation

(1,2)-computation

The algorithm does not depend on T.

T can be chosen in a continuum different ways.

The algorithm (1, 2)-computes a continuum of different sets.

There are only countably many recursive sets.

・ロト ・回ト ・ヨト

Definition Fano Plane Projective Planes

Structured Frequency Computation

Definition

By a *structure* of a finite set K we call a set of K's subsets $S \subseteq 2^{K}$. Assume $K = \{1, 2, ..., n\}$.

Definition

A set A is (S, K)-computable (or computable with a structure S) iff there is a total recursive function f which assigns to all distinct inputs x_1, x_2, \ldots, x_n a binary vector (y_1, y_2, \ldots, y_n) such that $\exists B \in S \ \forall b \in B \ \chi_A(x_b) = y_b$

イロト イヨト イヨト イヨト

Definition Fano Plane Projective Planes

Fano Frequency Computation

・ロン ・回と ・ヨン ・ヨン

Э

Definition Fano Plane Projective Planes

Fano Frequency Computation

Theorem

A set A is Fano-computable iff it is recursive.

Observation	
$\frac{3}{7} < \frac{1}{2}$	

・ロト ・回ト ・ヨト ・ヨト

æ

Definition Fano Plane Projective Planes

Some Properties of Fano structure

Definition

By the size of a structure $S \subseteq 2^{K}$ we denote the size of the smallest subset - $\min_{A \in S} |A|$. We call the structure size consistent iff $\neg \exists K' \subseteq K \ \min_{A' \in S} \frac{|A' \cap K'|}{|K'|} > \min_{A \in S} \frac{|A|}{|K|}$

To avoid such cases:

Definition Fano Plane Projective Planes

Some Properties of Fano structure

Definition

We call a structure $S \subseteq 2^{K}$ overlapping iff $\forall A, B \in S \ A \cap B \neq \emptyset$.

K. Balodis, J. Iraids, R. Freivalds Structured Frequency Algorithms

・ロン ・回と ・ヨン ・ヨン

æ

Definition Fano Plane Projective Planes

Overlapping Structures

Theorem

If a set A is computable with an overlapping structure then A is recursive.

Theorem (Projective plane of order *q*)

For any set K of size $n = q^2 + q + 1$ where q is a prime power there exists a size consistent overlapping structure of size q + 1.

Theorem

Every size consistent overlapping structure $S \subseteq 2^{K}$ has size at least \sqrt{n} where n = |K|.

イロト イヨト イヨト イヨト

Definition Fano Plane Projective Planes

Overlapping Structures

The algorithm is asked to give the correct answer on a small fraction of inputs – $O\left(\frac{\sqrt{n}}{n}\right) = O\left(\frac{1}{\sqrt{n}}\right)$ – (instead of Trakhtenbrot's $\frac{1}{2}$) however only recursive set can be computed.

イロン イヨン イヨン イヨン

Definition Recursive Graphs Continuum Graphs Recent Developments

Graph Structures

Definition

We call a structure $S \subseteq 2^{K}$ a graph structure iff $\forall A \in S |A| = 2$.

A natural question

For which graphs G are the G-computable sets recursive?

・ロト ・日本 ・モート ・モート

Definition Recursive Graphs Continuum Graphs Recent Developments

Recursive Graphs

Proposition

If the graph G is either a triangle C_3 or a star graph S_n then every G-computable set is recursive.

イロト イヨト イヨト イヨト

Definition Recursive Graphs Continuum Graphs Recent Developments

Continuum Implying Subgraphs

Theorem

If a graph G contains as a subgraph a cycle of length 4 (C_4) or two vertex-disjoint paths of length 3 then there is a continuum of G-computable sets, namely, every (1,2)-computable set is also G-computable.

<ロ> <同> <同> <同> < 同>

- ∢ ⊒ →

Definition Recursive Graphs Continuum Graphs Recent Developments

Continuum Implying Subgraphs

Theorem

If a graph G contains as a subgraph a cycle of length 4 (C_4) or two vertex-disjoint paths of length 3 then there is a continuum of G-computable sets, namely, every (1,2)-computable set is also G-computable.

・ロト ・回ト ・ヨト

Definition Recursive Graphs Continuum Graphs Recent Developments

Small Connected Graphs (≤ 6 vertices)

æ

Definition Recursive Graphs Continuum Graphs Recent Developments

Recent Developments

Theorem

If a graph G contains as a subgraph three vertex-disjoint paths of length 2 then there is a continuum of G-computable sets.

Theorem

If the graph G is two vertex-disjoint paths of length 2 then every G-computable set is recursive.

Definition Recursive Graphs Continuum Graphs Recent Developments

Small Connected Graphs (\leq 6 vertices)

・ロト ・回ト ・ヨト ・ヨト

3

Generalizations Open Problems

Generalizations

э

Generalizations Open Problems

Generalizations

K. Balodis, J. Iraids, R. Freivalds

Generalizations Open Problems

Open Problems

Open Problems

- Are there other size consistent non-overlapping structures of size less than √n that allow only computability of recursive sets? If so then what is the smallest possible fraction of correct answers attainable?
- For graph frequency computation obtain a complete classification of all graphs *G* and classes of *G*-computable sets.
- What other types of structures are interesting and worth considering and what classes of sets are computable with them?

・ロト ・回ト ・ヨト

Thank you! Questions?

(日) (圖) (문) (문) (문)