Data exchange over arbitrary wireless networks

Ivo Kubjas

October 5, 2014

Motivation

Figure : The network of 5 nodes

Motivation

Figure : The sets associated with nodes

Motivation

Figure : Reconciled sets

Multicast channel

 $\ensuremath{\mathsf{Figure}}$: The node in blue circle transmits and the nodes in red circles receive the message

Index coding

Transmitter wants to transmit bits x_1, \ldots, x_n such that each of the nodes recovers bit x_i while nodes are having bits $\{x_i, j \neq i\}$ as side information.

Index coding

Transmitter wants to transmit bits x_1, \ldots, x_n such that each of the nodes recovers bit x_i while nodes are having bits $\{x_j, j \neq i\}$ as side information.

Solution (Bar-Yossef, Birk, Jayram, Kol '06)

G is a side information graph if there is edge between *i*-th and *j*-th node if node X_j has bit x_i . Then the transmitter needs to send minrank₂(G) bits.

$minrank_2$

Definition

Let \mathcal{G} be a directed graph of *n* vertices without self-loops. We say that a 0-1 matrix $A = (a_{ij})$ fits \mathcal{G} if for all *i* and *j*:

•
$$a_{ii} = 1$$
,

• $a_{ij} = 0$ whenever (i, j) is not an edge of \mathcal{G} .

$minrank_2$

Definition

Let \mathcal{G} be a directed graph of *n* vertices without self-loops. We say that a 0-1 matrix $A = (a_{ij})$ fits \mathcal{G} if for all *i* and *j*:

•
$$a_{ii} = 1$$
,

•
$$a_{ij} = 0$$
 whenever (i, j) is not an edge of \mathcal{G} .

Definition

 $minrank_2(G) := min \{ rank_2(A) : A \text{ fits } \mathcal{G} \}.$

Side information graph

Example

The side information graph for graph ${\mathcal G}$ from previous example is

Matrix

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

fits \mathcal{G} and rank₂(A) = 3. Thus, the transmitter needs at least 3 transmissions.

Ivo Kubjas (UT)

Data Exchange Protocol

Each node holds some items x_i and they wish to recover all items for every node.

Data Exchange Protocol

Each node holds some items x_i and they wish to recover all items for every node.

Solution (Rouayheb, Sprintson, Sadeghi)

Let \mathbb{A} be a family of matrices corresponding to the items the nodes have and B_i be a matrix denoting the items *i*-th node has. Then the number of transmissions is $\tau = \min_{A \in \mathbb{A}} \operatorname{rank}(A)$ such that $\operatorname{rank}\begin{pmatrix} \begin{bmatrix} A \\ B_i \end{bmatrix} \end{pmatrix} = n$, $\forall i = 1, \dots, k$.

Set reconciliation protocol using possession matrices

Definition

Let \mathbb{F} be a finite field. Let X_i , $i \in [k]$, be the sets the nodes possess. Let $n = |\bigcup_{i \in [k]} X_i|$. Let \mathbb{A}_i , $i \in [k]$, be a family of $(n \times n)$ -dimensional matrices over \mathbb{F} . For the matrix family \mathbb{A}_i , $i \in [k]$, we use a special symbol * to denote an arbitrary element in \mathbb{F} . The element in *j*-th column and *t*-th row of \mathbb{A}_i , for $t \in [n]$, is * if $x_j \in X_i$ and 0 otherwise. Such matrix family \mathbb{A}_i , $i \in [k]$, is called the possession matrix of the node $v_i \in \mathcal{V}$.

Set reconciliation protocol using possession matrices

Definition

Let \mathbb{F} be a finite field. Let X_i , $i \in [k]$, be the sets the nodes possess. Let $n = |\bigcup_{i \in [k]} X_i|$. Let \mathbb{A}_i , $i \in [k]$, be a family of $(n \times n)$ -dimensional matrices over \mathbb{F} . For the matrix family \mathbb{A}_i , $i \in [k]$, we use a special symbol * to denote an arbitrary element in \mathbb{F} . The element in *j*-th column and *t*-th row of \mathbb{A}_i , for $t \in [n]$, is * if $x_j \in X_i$ and 0 otherwise. Such matrix family \mathbb{A}_i , $i \in [k]$, is called the possession matrix of the node $v_i \in \mathcal{V}$.

The possession matrix of the graph is the $(kn \times n)$ -dimensional matrix

$$\mathbb{A} = egin{bmatrix} \mathbb{A}_1 \ \mathbb{A}_2 \ dots \ \mathbb{A}_k \end{bmatrix},$$

where \mathbb{A}_i is the possession matrix family corresponding to the node *i*, $i \in [k]$.

Ivo Kubjas (UT)

The members of the matrix family \mathbb{A}_i denote the transmission matrices.

Example

Let the set of all items be $\mathbf{X} = (x_1, x_2, x_3, x_4)$. If the node v_1 has items $X_1 = \{x_1, x_3\}$, then the possession matrix of this node is

$$\mathbb{A}_1 = egin{bmatrix} * & 0 & * & 0 \ * & 0 & * & 0 \ * & 0 & * & 0 \ * & 0 & * & 0 \ \end{pmatrix}$$

For a matrix $A_1 \in \mathbb{A}_1$ such that

$$egin{array}{lll} {\mathcal A}_1 = egin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}, \end{array}$$

the transmitted messages are non-zero elements of the vector $A_1 \mathbf{X}^T = (x_1 + x_3, x_3, 0, 0)^T$.

max-rank

Let $A_{\max} \in \mathbb{A}_i$ have the maximal rank within \mathbb{A}_i . Then rank (A_{\max}) is the largest possible number of transmissions of independent items. The transmission vector $A_{\max} \mathbf{X}^{\mathcal{T}}$ is enough to recover X_i .

max-rank

Let $A_{\max} \in \mathbb{A}_i$ have the maximal rank within \mathbb{A}_i . Then rank (A_{\max}) is the largest possible number of transmissions of independent items. The transmission vector $A_{\max} \mathbf{X}^T$ is enough to recover X_i .

Definition

The max-rank of the matrix family ${\mathbb A}$ is defined as

$$\max$$
-rank $(\mathbb{A}) = \max_{A \in \mathbb{A}} \operatorname{rank}(A)$.

- During a single round, the messages are transmitted to nearest neighbours.
- Several rounds are required for full reconciliation.
- For an adjacency matrix *D*, the *i*-th power *Dⁱ* denotes the number of paths of length *i* between the nodes.

- During a single round, the messages are transmitted to nearest neighbours.
- Several rounds are required for full reconciliation.
- For an adjacency matrix *D*, the *i*-th power *Dⁱ* denotes the number of paths of length *i* between the nodes.

Let D be the adjacency matrix of the graph. Let ℓ be the smallest positive integer such that $\sum_{i=1}^{\ell} D^i$ is a positive matrix. Then the network is ℓ -solvable.

- During a single round, the messages are transmitted to nearest neighbours.
- Several rounds are required for full reconciliation.
- For an adjacency matrix *D*, the *i*-th power *Dⁱ* denotes the number of paths of length *i* between the nodes.

Let D be the adjacency matrix of the graph. Let ℓ be the smallest positive integer such that $\sum_{i=1}^{\ell} D^i$ is a positive matrix. Then the network is ℓ -solvable.

Let \mathbb{A} be the possession matrix of the graph, D be the adjacency matrix of the graph and E be a $(n \times n)$ -dimensional all-ones matrix. After performing one round of the protocol, the new possession matrix \mathbb{A}_+ is related to \mathbb{A} as

 $\mathbb{A}_+ = (D \otimes E) \mathbb{A}.$

Let \mathbb{A} be the possession matrix of the graph, D be the adjacency matrix of the graph and E be a $(n \times n)$ -dimensional all-ones matrix. After performing one round of the protocol, the new possession matrix \mathbb{A}_+ is related to \mathbb{A} as

 $\mathbb{A}_+ = (D \otimes E) \mathbb{A}.$

Example

		[*	0	0]		*	*	0]	
		*	0	0		*	*	0	
		*	0	0		*	*	0	
	$X_1 = \{x_1\}$	0	*	0		*	*	*	
lf	$X_2 = \{x_2\}$, then $\mathbb{A} =$	0	*	0	$\text{ and } \mathbb{A}_+ =$	*	*	* .	
	$X_3 = \{x_3\}$	0	*	0		*	*	*	
		0	0	*		0	*	*	
		0	0	*		0	*	*	
		0	0	*		0	*	*	

Ivo Kubjas (UT)

Data exchange over arbitrary wireless networl

The set reconciliation protocol construction

- Using the adjacency matrix, it is possible to obtain the number of items each node **should** have after a round.
- Similarly, for a specific matrix family member $A \in \mathbb{A}$, with

$$A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix},$$

it is possible to obtain the number of items each node **could** have after a round.

- If the latter two are equal, then the items are reconciled in a single round.
- Iterating over the required number of rounds, a protocol for full set reconciliation is obtained with the minimal number of rounds and transmissions.

Theorem

Consider a wireless broadcast network defined by a 1-solvable undirected graph \mathcal{H} , whose adjacency matrix is D. Let \mathbb{A} be the corresponding possession matrix of the graph. Then there exists an iterated data exchange protocol with ℓ rounds and τ transmissions, where

$$\tau = \sum_{i=1}^{\ell} \min_{A^{(i)} \in (D^{i-1} \otimes E) \mathbb{A}} \sum_{j=1}^{k} \operatorname{rank} A_{j}^{(i)}$$

for matrices $A^{(i)}$ which are subject to

$$\mathsf{rank} \begin{bmatrix} (\mathsf{diag}\,(D_{j,\star}) \otimes I) \, A^{(i)} \\ B_j((D^{i-1} \otimes E) \mathbb{A}) \end{bmatrix} = \mathsf{max-rank} \begin{bmatrix} (\mathsf{diag}(e_j) \otimes I) (D^i \otimes E) \mathbb{A} \end{bmatrix}, \forall j \in [k]$$

where $D_{j,\star}$ is the *j*-th row vector of the matrix *D*, e_j is the *j*-th canonical basis vector and B_j is an operator which returns the member matrix with maximum rank.

Solving max-rank

Solving max-rank

Theorem (Hartfiel, Loewy '84)

Let B be a partial V_r by V_c matrix with free entries indexed by elements of E. For any cover C of E we have rank $B^* \leq \operatorname{rank} B \setminus C + |C|$. Furthermore, there exists a cover C^* of E such that rank $B^* = \operatorname{rank} B \setminus C^* + |C^*|$.

Theorem (Geelen '99)

Let B be a partial V_r by V_c matrix with free entries indexed by elements of E, and let \tilde{B} be a completion of B. Then, either rank $\tilde{B} = \operatorname{rank} B^*$ or there exists $(i,j) \in E$ and $a \in \{1, \ldots, |V_r| + |V_c|\}$ such that $\tilde{B}(i,j;a) > \tilde{B}$.

Open questions

- Metric for measuring the lack of coherence.
- No known efficient methods for finding transmission matrices.
- Localized algorithms.