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Motivation

Figure : The network of 5 nodes
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Figure : The sets associated with nodes
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Multicast channel

Figure : The node in blue circle transmits and the nodes in red circles receive the
message
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Index coding
Transmitter wants to transmit bits x1, . . . , xn such that each of the nodes
recovers bit xi while nodes are having bits {xj , j 6= i} as side information.

x1, x2, x3, x4

x4 x3

x1 x2

Solution (Bar-Yossef, Birk, Jayram, Kol ’06)
G is a side information graph if there is edge between i-th and j-th node if
node Xj has bit xi . Then the transmitter needs to send minrank2(G) bits.
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minrank2

Definition
Let G be a directed graph of n vertices without self-loops. We say that a
0− 1 matrix A = (aij) fits G if for all i and j :

aii = 1,
aij = 0 whenever (i , j) is not an edge of G.

Definition
minrank2(G) := min {rank2(A) : A fits G} .
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Side information graph
Example
The side information graph for graph G from previous example is

1

2 3

4

Matrix

A =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


fits G and rank2(A) = 3. Thus, the transmitter needs at least 3
transmissions.
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Data Exchange Protocol
Each node holds some items xi and they wish to recover all items for every
node.

x2, x4x1

x1, x3x2, x3

Solution (Rouayheb, Sprintson, Sadeghi)
Let A be a family of matrices corresponding to the items the nodes have
and Bi be a matrix denoting the items i-th node has. Then the number of

transmissions is τ = minA∈A rank(A) such that rank
([

A
Bi

])
= n,

∀i = 1, . . . , k.
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Set reconciliation protocol using possession matrices
Definition
Let F be a finite field. Let Xi , i ∈ [k], be the sets the nodes possess. Let
n = | ∪i∈[k] Xi |. Let Ai , i ∈ [k], be a family of (n × n)-dimensional
matrices over F. For the matrix family Ai , i ∈ [k], we use a special symbol
∗ to denote an arbitrary element in F. The element in j-th column and
t-th row of Ai , for t ∈ [n], is ∗ if xj ∈ Xi and 0 otherwise.
Such matrix family Ai , i ∈ [k], is called the possession matrix of the node
vi ∈ V.

The possession matrix of the graph is the (kn × n)-dimensional matrix

A =


A1
A2
...
Ak

 ,
where Ai is the possession matrix family corresponding to the node i ,
i ∈ [k].
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The members of the matrix family Ai denote the transmission matrices.

Example
Let the set of all items be X = (x1, x2, x3, x4). If the node v1 has items
X1 = {x1, x3}, then the possession matrix of this node is

A1 =


∗ 0 ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ 0

 .
For a matrix A1 ∈ A1 such that

A1 =


1 0 1 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,
the transmitted messages are non-zero elements of the vector
A1XT = (x1 + x3, x3, 0, 0)T .
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max-rank

Let Amax ∈ Ai have the maximal rank within Ai . Then rank(Amax) is the
largest possible number of transmissions of independent items. The
transmission vector AmaxXT is enough to recover Xi .

Definition
The max-rank of the matrix family A is defined as

max-rank(A) = max
A∈A

rank(A).
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During a single round, the messages are transmitted to nearest
neighbours.
Several rounds are required for full reconciliation.
For an adjacency matrix D, the i-th power Di denotes the number of
paths of length i between the nodes.

Lemma
Let D be the adjacency matrix of the graph. Let ` be the smallest positive

integer such that
∑̀
i=1

Di is a positive matrix. Then the network is
`-solvable.

Example

If the network is , then the adjacency

matrix is D =

1 1 0
1 1 1
0 1 1

 and the network is 2-solvable.
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Lemma
Let A be the possession matrix of the graph, D be the adjacency matrix of
the graph and E be a (n × n)-dimensional all-ones matrix. After
performing one round of the protocol, the new possession matrix A+ is
related to A as

A+ = (D ⊗ E )A.

Example

If
X1 = {x1}
X2 = {x2}
X3 = {x3}

, then A =



∗ 0 0
∗ 0 0
∗ 0 0
0 ∗ 0
0 ∗ 0
0 ∗ 0
0 0 ∗
0 0 ∗
0 0 ∗


and A+ =



∗ ∗ 0
∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗


.
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The set reconciliation protocol construction
Using the adjacency matrix, it is possible to obtain the number of
items each node should have after a round.
Similarly, for a specific matrix family member A ∈ A, with

A =


A1
A2
...

Ak

 ,

it is possible to obtain the number of items each node could have
after a round.
If the latter two are equal, then the items are reconciled in a single
round.
Iterating over the required number of rounds, a protocol for full set
reconciliation is obtained with the minimal number of rounds and
transmissions.
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Theorem
Consider a wireless broadcast network defined by a l-solvable undirected
graph H, whose adjacency matrix is D. Let A be the corresponding
possession matrix of the graph. Then there exists an iterated data
exchange protocol with ` rounds and τ transmissions, where

τ =
∑̀
i=1

min
A(i)∈(Di−1⊗E)A

k∑
j=1

rank A(i)
j

for matrices A(i) which are subject to

rank
[
(diag (Dj,?)⊗ I)A(i)

Bj((Di−1 ⊗ E )A)

]
= max-rank

[
(diag(ej)⊗ I)(Di ⊗ E )A

]
, ∀j ∈ [k],

where Dj,? is the j-th row vector of the matrix D, ej is the j-th canonical
basis vector and Bj is an operator which returns the member matrix with
maximum rank.

Ivo Kubjas (UT) Data exchange over arbitrary wireless networks October 5, 2014 16 / 18



Solving max-rank

Theorem (Hartfiel, Loewy ’84)
Let B be a partial Vr by Vc matrix with free entries indexed by elements
of E . For any cover C of E we have rank B∗ ≤ rank B \ C + |C |.
Furthermore, there exists a cover C∗ of E such that
rank B∗ = rank B \ C∗ + |C∗|.

Theorem (Geelen ’99)
Let B be a partial Vr by Vc matrix with free entries indexed by elements of
E , and let B̃ be a completion of B. Then, either rank B̃ = rank B∗ or there
exists (i , j) ∈ E and a ∈ {1, . . . , |Vr |+ |Vc |} such that B̃(i , j ; a) > B̃.
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Open questions

Metric for measuring the lack of coherence.
No known efficient methods for finding transmission matrices.
Localized algorithms.
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