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History of span programs 

 First defined in 1993 by Karchmer, Wigderson 

 Rediscovered in 2007, used for evaluating 
Boolean formulas by Reichardt, Špalek  

 In 2010 Reichardt proved that span programs 
are equivalent to quantum query algorithms 

 Used for s-t connectivity, triangle finding, k-
distinctness, graph collision, ... 

 Basis for Belovs's Learning Graph approach 
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Decision tree model 
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Quantum query model 
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Quantum queries 

Unitary transformations 



Notation 

 𝑆𝑝𝑎𝑛 𝑆 =  𝜆𝑖𝑣𝑖
𝑘
𝑖=1  | 𝑘 ∈ 𝑁, 𝑣𝑖 ∈ 𝑆, 𝜆𝑖 ∈ 𝔽  

 Bra: 〈𝑢| = 𝑐1, 𝑐2, … , 𝑐𝑛        Ket: |𝑣 =

𝑎1

𝑎2…
𝑎𝑛

 

 Inner product:  
𝑢|𝑣 = 𝑎1𝑐1 + 𝑎2𝑐2 + ⋯ + 𝑎𝑛𝑐𝑛 

 Norm: 𝑣 = 𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑛
2  
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Span program P on n bits 

Vector space: V 

Target vector: |𝑡  

Sets of vectors:   𝑉1,0 , 𝑉1,1 , … , 𝑉𝑛,0 , 𝑉𝑛,1, 𝑉𝑓𝑟𝑒𝑒  

If 𝑥𝑖 = 𝑏 then vectors 𝑉𝑖,𝑏 are available 

P «computes» 𝑓𝑃 ∶ 0,1 𝑛 → 0,1  

𝑓𝑃 𝑥 = 1   
 

    |𝑡 ∈ 𝑆𝑝𝑎𝑛 𝑉𝑓𝑟𝑒𝑒 ∪  𝑉𝑗,𝑥𝑗

𝑗
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Span program for «AND» function 

Geometric example:  𝑽 = ℝ𝟐 
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|𝑡  

𝑉1,1 

𝑉2,1 

𝑉1,0 = ∅ 
𝑉2,0 = ∅ 

 
  𝑓𝑃 =  𝐴𝑁𝐷2 



Span program for «XOR» function 

 𝑓 𝑥1, 𝑥2 = 𝑥1  ⊕ 𝑥2 

 Pick the target vector: |𝑡 =
1
1

 

 if 𝑥1 = 1 then make available the vector 1
0

 

 if 𝑥1 = 0 then make available the vector 0
1

 

 if 𝑥2 = 1 then make available the vector 1
0

 

 if 𝑥2 = 0 then make available the vector 0
1
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Span program for «XOR» function 

 𝑓 𝑥1, 𝑥2 = 𝑥1  ⊕ 𝑥2 

 Vector space: 𝑉 = ℝ2 

 Basis vectors: {|0 , |1 } 

 Pick the target vector: |𝑡 = |0 + |1  

 𝑥1 = 1 :  { |0  } 

 𝑥1 = 0 :  { |1  } 

 𝑥2 = 1 :  { |0  } 

 𝑥2 = 0 :  { |1  }  
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Span program for «𝑂𝑅𝑛» function 

 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑥1 ∨ 𝑥2 ∨ ⋯ ∨ 𝑥𝑛 

 Vector space: 𝑉 = ℝ 

 Basis vectors: {|0 } 

 Pick the target vector: |𝑡 = |0  

 For every 𝑖 ∈ 1. . 𝑛 : 

 𝑥𝑖 = 1 :  { |0  } 

 𝑥𝑖 = 0 :  {} 
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Case 𝑓𝑃 𝑥 = 1: positive witness 

 A – column matrix of the available vectors 

 |𝑤  - the positive witness 

 𝑤𝑠𝑖𝑧𝑒1 𝑃, 𝑥 = min
|𝑤 : 𝐴|𝑤 =|𝑡 

|𝑤 2 

 𝑤𝑠𝑖𝑧𝑒1(𝑃, 𝑥) – essentially a sum of squared coefficients 

for those vectors that are used to express the target vector 

 𝑤𝑠𝑖𝑧𝑒1 𝑃 = max
𝑥∈{0,1}𝑛

𝑤𝑠𝑖𝑧𝑒1(𝑃, 𝑥) 
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«𝑂𝑅𝑛»: positive witness 

 Target vector: |𝑡 = |0  

 For every 𝑖 ∈ 1. . 𝑛 : 

 𝑥𝑖 = 1 :  { |0  } 

 𝑥𝑖 = 0 :  {} 

 If for some 𝑥𝑖 = 1 then the target vector can 
be expressed: |𝑡 = 1 ∗ |0   

 𝑤𝑠𝑖𝑧𝑒1 𝑃 ≤ 12  
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Case 𝑓𝑃 𝑥 = 0: negative witness 

 𝑉 𝑥 =  𝑉𝑓𝑟𝑒𝑒 ∪  𝑉𝑗, 𝑥𝑗𝑗∈ 1..𝑛  

 𝑉 ¬𝑥 =  𝑉𝑓𝑟𝑒𝑒 ∪  𝑉𝑗, (1−𝑥𝑗) 𝑗∈ 1..𝑛  

 |𝑤′  - the negative witness 

 Need to find such |𝑤′  that 𝑤′|𝑡 = 1 and 
∀ |𝑦 ∈ 𝑉 𝑥   |𝑤′ ⊥ |𝑦  

 wsize0 P, x = min
|𝑤′ 

 𝑤′|𝑦 2
|𝑦 ∈𝑉(¬ 𝑥)  

 𝑤𝑠𝑖𝑧𝑒0 𝑃 = max
𝑥∈{0,1}𝑛

𝑤𝑠𝑖𝑧𝑒0(𝑃, 𝑥) 
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«𝑂𝑅𝑛»: negative witness 

 Target vector: |𝑡 = |0  

 For every 𝑖 ∈ 1. . 𝑛 : 

 𝑥𝑖 = 1 :  { |0  } 

 𝑥𝑖 = 0 :  {} 

 If all 𝑥𝑖 are equal to 0 then can take negative 
witness: |𝑤′ = |0  

 𝑤𝑠𝑖𝑧𝑒0 𝑃 ≤ 12 + 12 + ⋯ + 12 = 𝑛 
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Span program complexity 

 𝑤𝑠𝑖𝑧𝑒 𝑃 = 𝑤𝑠𝑖𝑧𝑒1 𝑃 ∗ 𝑤𝑠𝑖𝑧𝑒0(𝑃) 

 𝑄 𝑓  - quantum query complexity 

 𝑄 𝑓 = 𝑂 𝑤𝑠𝑖𝑧𝑒 𝑃𝑓  

 For «𝑂𝑅𝑛»: 

𝑤𝑠𝑖𝑧𝑒 𝑃 = 1 ∗ 𝑛 = 𝑛 
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Span program for «𝑂𝑅𝑛» function 

 If m = #𝑖: 𝑥𝑖 = 1  then the target vector can 

be expressed: |𝑡 =
1

𝑚
|0 +

1

𝑚
|0 + ⋯ +

1

𝑚
|0  

 𝑤𝑠𝑖𝑧𝑒1 𝑃 ≤ 𝑚
1

𝑚

2
=

1

𝑚
  

 𝑤𝑠𝑖𝑧𝑒0 𝑃 ≤ 12 + 12 + ⋯ + 12 = 𝑛 

 𝑤𝑠𝑖𝑧𝑒 𝑃 = 𝑤𝑠𝑖𝑧𝑒1 𝑃 ∗ 𝑤𝑠𝑖𝑧𝑒0 𝑃 =
𝑛

𝑚
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Graph bipartiteness 

 𝑛 – number of vertices in the given graph 

 We will construct an 𝜽 𝒏 𝒏  algorithm for testing if 

the given graph is bipartite 

 It’s asymptotically optimal 

 Any classical algorithm would need to consider all 
edges – in worst case Ω 𝑛2  queries 

 Main idea: look for an odd cycle 

 An undirected graph is bipartite iff it has no odd 
cycles 
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Graph bipartiteness 

 Vector space: 𝑉 = ℝ2𝑛2+1 

 Basis vectors: |0 ∪  𝑣𝑘,𝑏 |𝑣, 𝑘 ∈ 1. . 𝑛 , 𝑏 ∈ 0,1  

 Target vector: |𝑡 = |0   

 For every 𝑘 ∈ 1. . 𝑛 : can use the free vector 

|0 +  𝑘𝑘,0 +  𝑘𝑘,1  

 For every 𝑘 ∈ 1. . 𝑛 : 

 for every edge 𝑢 − 𝑣 (where input 𝑥𝑢,𝑣 =  1) make 
available the vectors:  

 𝑢𝑘,0 +  𝑣𝑘,1  and  𝑢𝑘,1 +  𝑣𝑘,0  
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Graph bipartiteness 

|𝑡  = |0 +  11,0 +  11,1 −  11,0 +  21,1 

+  21,1 +  31,0 −  31,0 +  11,1  
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𝑤𝑠𝑖𝑧𝑒1 𝑃, 𝑥 ≤ 12 + −1 2 + 12 + −1 2 = 4 
1 

2 

4 

5 
3 

1 

1 
1 



Graph bipartiteness 

|𝑡  = |0 +  11,0 +  11,1 −  11,0 +  21,1 

+
3

4
 21,1 +  31,0 

+
1

4
  21,1 +  41,0 −  41,0 +  51,1 

+  51,1 +  31,0  −  31,0 +  11,1  
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𝑤𝑠𝑖𝑧𝑒1 𝑃, 𝑥

≤ 12 + −1 2 +
3

4

2

+
1

4

2

+ −
1

4

2

+
1

4

2

+ −1 2 = 3 +
12

16
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4
 

1

4
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Graph bipartiteness 

|𝑡 = 

    
1

3
|0 +  11,0 +   11,1 −  11,0 +   21,1 +  21,1 +  31,0 −  31,0 +  11,1  

+
1

3
|0 +  22,0 +   22,1 −  22,0 +  32,1 +  32,1 +   12,0 −  12,0 +   22,1  

+
1

3
|0 +  33,0 +   33,1 −  33,0 +  13,1 +  13,1 +   23,0 −  23,0 +   33,1  
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𝑤𝑠𝑖𝑧𝑒1 𝑃, 𝑥 ≤ 3 ∗
1

3

2

∗ 12 + −1 2 + 12 + −1 2

=
4

3
 < 3 +

12

16
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2 

4 
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1 
1 

0 

0 

0 𝒘𝒔𝒊𝒛𝒆𝟏 𝑷 = 𝑶(𝟏) 



Graph bipartiteness: complexity 

 Need to find such |𝑤′  that 𝑤′|0 = 1 and ∀ |𝑦 ∈
𝑉 𝑥   |𝑤′ ⊥ |𝑦  

 Must have 𝑤′| |0 +  𝑘𝑘,0 +  𝑘𝑘,1 = 0 

 For every 𝑘 set 𝑤′|𝑘𝑘,0 = 0 and 𝑤′|𝑘𝑘,1 = −1 

 For every u − 𝑣 set 𝑤′|𝑢𝑘,𝑏 = − 𝑤′|𝑣𝑘,1−𝑏  

 For any given vector 𝑣 value 𝑤′|𝑣 2 ≤ 1 

 The total number of vectors does not exceed 𝑛 + 𝑛3 

 𝑤𝑠𝑖𝑧𝑒0 𝑃 = 𝑂 𝑛3  

 𝑤𝑠𝑖𝑧𝑒 𝑃 = 𝑤𝑠𝑖𝑧𝑒1 𝑃 ∗ 𝑤𝑠𝑖𝑧𝑒0 𝑃 = 𝜽 𝒏 𝒏  
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Graph connectivity 

 Main idea: is every vertex reachable from vertex 1? 

 Target vector: |𝑡 =  02 + |03 + ⋯ + |0𝑁  

 For every 𝑘 ∈ 2. . 𝑛 : can use the free vector 

|0𝑘 +  1𝑘 − |𝑘𝑘  

 For every 𝑘 ∈ 2. . 𝑛 : 

 for every edge 𝑢 − 𝑣 (where input 𝑥𝑢,𝑣 =  1) make 
available the vector: 

 𝑢𝑘 − |𝑣𝑘  

 𝒘𝒔𝒊𝒛𝒆 𝑷 = 𝜽 𝒏 𝒏  
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Eulerian cycle 

 Main idea: check for vertex with an odd degree 

 Target vector: |𝑡 =  |0  

 For every 𝑘 ∈ 1. . 𝑛  can use vectors: 

 free vetor |0 +  𝑘0,0 −  𝑘𝑛,1  

 For every 𝑖 ∈ 1. . 𝑛 : 

 If (𝑥𝑘,𝑖 = 1) then can use vectors: 

− 𝑘𝑖−1,0 +  𝑘𝑖,1  and − 𝑘𝑖−1,1 +  𝑘𝑖,0  

 if (𝑥𝑘,𝑖 = 0) then can use vectors: 

− 𝑘𝑖−1,0 +  𝑘𝑖,0  and − 𝑘𝑖−1,1 +  𝑘𝑖,1  
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Open problems 

 Graph collision: a graph is known beforehand but 
the vertex marking is not, check if two marked 
vertices are adjacent. Best lower bound is Ω 𝑛 . 

 Triangle finding: check if in a given graph there are 
three vertices which are pairwise adjacent. Best 
lower bound is Ω 𝑛 . 

 Perfect matching: check if can take  
exactly one entry with value «1» in  
each column and row from the graph’s  
adjacency matrix 
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THANKS FOR LISTENING. QUESTIONS? 
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END. 
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