Span-program-based quantum query algorithms

Mg.sc.comp. Agnis Āriṇš agnis.arins@lu.lv

Ratnieki, 2014. gada 3. oktobris

History of span programs

- First defined in 1993 by Karchmer, Wigderson
\square Rediscovered in 2007, used for evaluating Boolean formulas by Reichardt, Špalek
- In 2010 Reichardt proved that span programs are equivalent to quantum query algorithms
\square Used for s-t connectivity, triangle finding, kdistinctness, graph collision, ...
\square Basis for Belovs's Learning Graph approach

Decision tree model

Quantum query model

Quantum queries
Unitary transformations

$$
\left.|\mathrm{x}\rangle_{\mathrm{I}}\left|\psi_{\mathrm{x}}^{\mathrm{t}}\right\rangle_{\mathrm{A}}=\mathrm{U}_{\mathrm{t}} O \mathrm{U}_{\mathrm{t}-1} \ldots \mathrm{U}_{1} O \mathrm{U}_{0}^{\alpha \mathrm{x}}\right\rangle_{\mathrm{I}}|1,0\rangle_{\mathrm{Q}}|0\rangle_{\mathrm{W}}
$$

Notation

$\square \operatorname{Span}(S)=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i} \mid k \in N, v_{i} \in S, \lambda_{i} \in \mathbb{F}\right\}$
-Bra: $\langle u|=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \quad$ Ket: $|v\rangle=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \ldots \\ a_{n}\end{array}\right)$

- Inner product:

$$
\langle u \mid v\rangle=a_{1} c_{1}+a_{2} c_{2}+\cdots+a_{n} c_{n}
$$

- Norm: $\|v\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}$

Span program P on n bits

Vector space: V
Target vector: $|t\rangle$
Sets of vectors: $V_{1,0}, V_{1,1}, \ldots, V_{n, 0}, V_{n, 1}, V_{\text {free }}$ If $x_{i}=b$ then vectors $V_{i, b}$ are available
P «computes» $f_{P}:\{0,1\}^{n} \rightarrow\{0,1\}$
$f_{P}(x)=1 \Leftrightarrow|t\rangle \in \operatorname{Span}\left(V_{\text {free }} \cup \bigcup_{j} V_{j, x_{j}}\right)$

Span program for «AND» function

Geometric example: $V=\mathbb{R}^{\mathbf{2}}$

Span program for «XOR» function

- $f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}$
- Pick the target vector: $|t\rangle=\binom{1}{1}$
- if $x_{1}=1$ then make available the vector $\binom{1}{0}$
- if $x_{1}=0$ then make available the vector $\binom{0}{1}$
- if $x_{2}=1$ then make available the vector $\binom{1}{0}$
a if $x_{2}=0$ then make available the vector $\binom{0}{1}$

Span program for «XOR» function

- $f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}$
- Vector space: $V=\mathbb{R}^{2}$
- Basis vectors: $\{|0\rangle,|1\rangle\}$
\square Pick the target vector: $|t\rangle=|0\rangle+|1\rangle$

$$
\begin{aligned}
\square x_{1} & =1:\{|0\rangle\} \\
x_{1} & =0:\{|1\rangle\} \\
x_{2} & =1:\{|0\rangle\} \\
x_{2} & =0:\{|1\rangle\}
\end{aligned}
$$

Span program for «OR R_{n} » function

$\square f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \vee x_{2} \vee \cdots \vee x_{n}$

- Vector space: $V=\mathbb{R}$
- Basis vectors: $\{|0\rangle\}$
\square Pick the target vector: $|t\rangle=|0\rangle$
- For every $i \in[1 . . n]$:

$$
\begin{aligned}
& x_{i}=1:\{|0\rangle\} \\
& x_{i}=0:\{ \}
\end{aligned}
$$

Case $f_{P}(x)=1$: positive witness

A - column matrix of the available vectors

- $|w\rangle$ - the positive witness
$\square \operatorname{wsize}_{1}(P, x)=\min _{|w\rangle: A|w\rangle=|t\rangle} \||w\rangle \|^{2}$
$\square \operatorname{wsize}_{1}(P, x)$ - essentially a sum of squared coefficients for those vectors that are used to express the target vector
$\square \operatorname{wsize}_{1}(P)=\max _{x \in\{0,1\}^{n}} \operatorname{wsize}_{1}(P, x)$

«OR n_{n} : positive witness

- Target vector: $|t\rangle=|0\rangle$
- For every $i \in[1 . . n]$:

$$
\begin{aligned}
\square x_{i} & =1:\{|0\rangle\} \\
x_{i} & =0:\{ \}
\end{aligned}
$$

- If for some $x_{i}=1$ then the target vector can be expressed: $|t\rangle=1 *|0\rangle$
\square wize $_{1}(P) \leq 1^{2}$

Case $f_{P}(x)=0$: negative witness

${ }_{\square} V(x)=V_{\text {free }} \cup \bigcup_{j \in[1 . . n]} V_{j, x_{j}}$
$\square V(\neg x)=V_{\text {free }} \cup U_{j \in[1 . . n]} V_{j,\left(1-x_{j}\right)}$

- $\left|w^{\prime}\right\rangle$ - the negative witness
\square Need to find such $\left|w^{\prime}\right\rangle$ that $\left\langle w^{\prime} \mid t\right\rangle=1$ and
$\forall|y\rangle \in V(x)\left(\left|w^{\prime}\right\rangle \perp|y\rangle\right)$
$\square \operatorname{wsize}_{0}(\mathrm{P}, \mathrm{x})=\min _{\left|w^{\prime}\right\rangle} \sum_{|y\rangle \in V(\neg x)}\left\langle w^{\prime} \mid y\right\rangle^{2}$
$\square \operatorname{wsize}_{0}(P)=\max _{x \in\{0,1\}^{n}} \operatorname{wsize}_{0}(P, x)$

«OR n_{n} »: negative witness

\square Target vector: $|t\rangle=|0\rangle$

- For every $i \in[1 . . n]$:

$$
\begin{aligned}
\square x_{i} & =1:\{|0\rangle\} \\
x_{i} & =0:\{ \}
\end{aligned}
$$

If all x_{i} are equal to 0 then can take negative witness: $\left|w^{\prime}\right\rangle=|0\rangle$
$\square \operatorname{wsize}_{0}(P) \leq 1^{2}+1^{2}+\cdots+1^{2}=n$

Span program complexity

$\square \operatorname{wsize}(P)=\sqrt{w \operatorname{size}_{1}(P) * \operatorname{wsize}_{0}(P)}$
${ }^{\square} Q(f)$ - quantum query complexity

- $Q(f)=O\left(w \operatorname{size}\left(P_{f}\right)\right)$
- For $« O R_{n}$ »:

$$
w \operatorname{size}(P)=\sqrt{1 * n}=\sqrt{n}
$$

Span program for «OR R_{n} » function

- If $\mathrm{m}=\# i:\left(x_{i}=1\right)$ then the target vector can be expressed: $|t\rangle=\frac{1}{m}|0\rangle+\frac{1}{m}|0\rangle+\cdots+\frac{1}{m}|0\rangle$
\square wize $_{1}(P) \leq m\left(\frac{1}{m}\right)^{2}=\frac{1}{m}$
$\square \operatorname{wsize}_{0}(P) \leq 1^{2}+1^{2}+\cdots+1^{2}=n$
\square wsize $(P)=\sqrt{w \text { size }_{1}(P) * \text { wsize }_{0}(P)}=\sqrt{\frac{n}{m}}$

Graph bipartiteness

- n - number of vertices in the given graph
- We will construct an $\boldsymbol{\theta}(\boldsymbol{n} \sqrt{\boldsymbol{n}})$ algorithm for testing if the given graph is bipartite
- It's asymptotically optimal
- Any classical algorithm would need to consider all edges - in worst case $\Omega\left(n^{2}\right)$ queries
- Main idea: look for an odd cycle
- An undirected graph is bipartite iff it has no odd cycles

Graph bipartiteness

- Vector space: $V=\mathbb{R}^{2 n^{2}+1}$
- Basis vectors: $\{|0\rangle\} \cup\left\{\left|v_{k, b}\right\rangle \mid v, k \in[1 . . n], b \in\{0,1\}\right\}$
- Target vector: $|t\rangle=|0\rangle$
- For every $k \in[1 . . n]$: can use the free vector $|0\rangle+\left|k_{k, 0}\right\rangle+\left|k_{k, 1}\right\rangle$
- For every $k \in[1 . . n]$:
- for every edge $u-v$ (where input $x_{u, v}=1$) make available the vectors:

$$
\left|u_{k, 0}\right\rangle+\left|v_{k, 1}\right\rangle \text { and }\left|u_{k, 1}\right\rangle+\left|v_{k, 0}\right\rangle
$$

Graph bipartiteness

$$
\begin{aligned}
|t\rangle= & \left(|0\rangle+\left|1_{1,0}\right\rangle+\left|1_{1,1}\right\rangle\right)-\left(\left|1_{1,0}\right\rangle+\left|2_{1,1}\right\rangle\right) \\
& +\left(\left|2_{1,1}\right\rangle+\left|3_{1,0}\right\rangle\right)-\left(\left|3_{1,0}\right\rangle+\left|1_{1,1}\right\rangle\right)
\end{aligned}
$$

$$
\operatorname{wsize}_{1}(P, x) \leq 1^{2}+(-1)^{2}+1^{2}+(-1)^{2}=4
$$

Graph bipartiteness

$$
\begin{aligned}
&|t\rangle=\left(|0\rangle+\left|1_{1,0}\right\rangle+\left|1_{1,1}\right\rangle\right)-\left(\left|1_{1,0}\right\rangle+\left|2_{1,1}\right\rangle\right) \\
&+\frac{3}{4}\left(\left|2_{1,1}\right\rangle+\left|3_{1,0}\right\rangle\right) \\
&+\frac{1}{4}\left(\left(\left|2_{1,1}\right\rangle+\left|4_{1,0}\right\rangle\right)-\left(\left|4_{1,0}\right\rangle+\left|5_{1,1}\right\rangle\right)\right. \\
&\left.+\left(\left|5_{1,1}\right\rangle+\left|3_{1,0}\right\rangle\right)\right)-\left(\left|3_{1,0}\right\rangle+\left|1_{1,1}\right\rangle\right) \\
& \text { wsize }_{1}(P, x) \\
& \leq 1^{2}+(-1)^{2}+\left(\frac{3}{4}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(-\frac{1}{4}\right)^{2} \\
&+\frac{1^{2}}{4}+(-1)^{2}=3+\frac{12}{16}
\end{aligned}
$$

Graph bipartiteness

$$
\begin{aligned}
& |t\rangle= \\
& \begin{array}{l}
\frac{1}{3}\left(\left(|0\rangle+\left|1_{1,0}\right\rangle+\left|1_{1,1}\right\rangle\right)-\left(\left|1_{1,0}\right\rangle+\left|2_{1,1}\right\rangle\right)+\left(\left|2_{1,1}\right\rangle+\left|3_{1,0}\right\rangle\right)-\left(\left|3_{1,0}\right\rangle+\left|1_{1,1}\right\rangle\right)\right) \\
+\frac{1}{3}\left(\left(|0\rangle+\left|2_{2,0}\right\rangle+\left|2_{2,1}\right\rangle\right)-\left(\left|2_{2,0}\right\rangle+\left|3_{2,1}\right\rangle\right)+\left(\left|3_{2,1}\right\rangle+\left|1_{2,0}\right\rangle\right)-\left(\left|1_{2,0}\right\rangle+\left|2_{2,1}\right\rangle\right)\right) \\
+\frac{1}{3}\left(\left(|0\rangle+\left|3_{3,0}\right\rangle+\left|3_{3,1}\right\rangle\right)-\left(\left|3_{3,0}\right\rangle+\left|1_{3,1}\right\rangle\right)+\left(\left|1_{3,1}\right\rangle+\left|2_{3,0}\right\rangle\right)-\left(\left|2_{3,0}\right\rangle+\left|3_{3,1}\right\rangle\right)\right) \\
\text { wsize }_{1}(P, x) \leq 3 *\left(\frac{1}{3}\right)^{2} *\left(1^{2}+(-1)^{2}+1^{2}+(-1)^{2}\right) \\
=\frac{4}{3}<3+\frac{12}{16} \\
\text { wsize }_{\mathbf{1}}(\boldsymbol{P})=\boldsymbol{O}(\mathbf{1})
\end{array}
\end{aligned}
$$

Graph bipartiteness: complexity

- Need to find such $\left|w^{\prime}\right\rangle$ that $\left\langle w^{\prime} \mid 0\right\rangle=1$ and $\forall|y\rangle \in$ $V(x)\left(\left|w^{\prime}\right\rangle \perp|y\rangle\right)$
- Must have $\left.\left\langle w^{\prime}\right|\left(|0\rangle+\left|k_{k, 0}\right\rangle+\left|k_{k, 1}\right\rangle\right)\right\rangle=0$
\square For every k set $\left\langle w^{\prime} \mid k_{k, 0}\right\rangle=0$ and $\left\langle w^{\prime} \mid k_{k, 1}\right\rangle=-1$
- For every $u-v$ set $\left\langle w^{\prime} \mid u_{k, b}\right\rangle=-\left\langle w^{\prime} \mid v_{k, 1-b}\right\rangle$
- For any given vector v value $\left\langle w^{\prime} \mid v\right\rangle^{2} \leq 1$
- The total number of vectors does not exceed $n+n^{3}$
- wizize $_{0}(P)=O\left(n^{3}\right)$
$-w \operatorname{size}(P)=\sqrt{w \operatorname{size}_{1}(P) * w \operatorname{size}_{0}(P)}=\boldsymbol{\theta}(\boldsymbol{n} \sqrt{\boldsymbol{n}})$

Graph connectivity

- Main idea: is every vertex reachable from vertex 1 ?
- Target vector: $|t\rangle=\left|0_{2}\right\rangle+\left|0_{3}\right\rangle+\cdots+\left|0_{N}\right\rangle$
- For every $k \in[2 . . n]$: can use the free vector

$$
\left|0_{k}\right\rangle+\left|1_{k}\right\rangle-\left|k_{k}\right\rangle
$$

- For every $k \in[2 . . n]$:
${ }_{\square}$ for every edge $u-v$ (where input $x_{u, v}=1$) make available the vector:

$$
\left|u_{k}\right\rangle-\left|v_{k}\right\rangle
$$

$\operatorname{wsize}(P)=\theta(n \sqrt{n})$

Eulerian cycle

- Main idea: check for vertex with an odd degree
- Target vector: $|t\rangle=|0\rangle$
- For every $k \in[1 . . n]$ can use vectors:
- free vetor $|0\rangle+\left|k_{0,0}\right\rangle-\left|k_{n, 1}\right\rangle$
- For every $i \in[1 . . n]$:
- If $\left(x_{k, i}=1\right)$ then can use vectors:

$$
-\left|k_{i-1,0}\right\rangle+\left|k_{i, 1}\right\rangle \text { and }-\left|k_{i-1,1}\right\rangle+\left|k_{i, 0}\right\rangle
$$

\square if $\left(x_{k, i}=0\right)$ then can use vectors:

$$
-\left|k_{i-1,0}\right\rangle+\left|k_{i, 0}\right\rangle \text { and }-\left|k_{i-1,1}\right\rangle+\left|k_{i, 1}\right\rangle
$$

Open problems

\square Graph collision: a graph is known beforehand but the vertex marking is not, check if two marked vertices are adjacent. Best lower bound is $\Omega(\sqrt{n})$.

- Triangle finding: check if in a given graph there are three vertices which are pairwise adjacent. Best lower bound is $\Omega(n)$.
- Perfect matching: check if can take exactly one entry with value «1» in each column and row from the graph's adjacency matrix

THANKS FOR LISTENING. QUESTIONS?

END.

