
Mg.sc.comp. Agnis Āriņš 
agnis.arins@lu.lv 

Span-program-based quantum query 
algorithms 

 

1 

Ratnieki, 2014. gada 3. oktobris 



History of span programs 

 First defined in 1993 by Karchmer, Wigderson 

 Rediscovered in 2007, used for evaluating 
Boolean formulas by Reichardt, Špalek  

 In 2010 Reichardt proved that span programs 
are equivalent to quantum query algorithms 

 Used for s-t connectivity, triangle finding, k-
distinctness, graph collision, ... 

 Basis for Belovs's Learning Graph approach 

2 



Decision tree model 

3 

X 

X 

X 

X 

X 



Quantum query model 

4 

x I 𝜓x
t  A =  Ut 𝑂 Ut−1 . . .  U1𝑂 U0 x I 1, 0 Q 0 W 

Quantum queries 

Unitary transformations 



Notation 

 𝑆𝑝𝑎𝑛 𝑆 =  𝜆𝑖𝑣𝑖
𝑘
𝑖=1  | 𝑘 ∈ 𝑁, 𝑣𝑖 ∈ 𝑆, 𝜆𝑖 ∈ 𝔽  

 Bra: 〈𝑢| = 𝑐1, 𝑐2, … , 𝑐𝑛        Ket: |𝑣 =

𝑎1

𝑎2…
𝑎𝑛

 

 Inner product:  
𝑢|𝑣 = 𝑎1𝑐1 + 𝑎2𝑐2 + ⋯ + 𝑎𝑛𝑐𝑛 

 Norm: 𝑣 = 𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑛
2  

5 



Span program P on n bits 

Vector space: V 

Target vector: |𝑡  

Sets of vectors:   𝑉1,0 , 𝑉1,1 , … , 𝑉𝑛,0 , 𝑉𝑛,1, 𝑉𝑓𝑟𝑒𝑒  

If 𝑥𝑖 = 𝑏 then vectors 𝑉𝑖,𝑏 are available 

P «computes» 𝑓𝑃 ∶ 0,1 𝑛 → 0,1  

𝑓𝑃 𝑥 = 1   
 

    |𝑡 ∈ 𝑆𝑝𝑎𝑛 𝑉𝑓𝑟𝑒𝑒 ∪  𝑉𝑗,𝑥𝑗

𝑗

 

 
6 



Span program for «AND» function 

Geometric example:  𝑽 = ℝ𝟐 

 

7 

|𝑡  

𝑉1,1 

𝑉2,1 

𝑉1,0 = ∅ 
𝑉2,0 = ∅ 

 
  𝑓𝑃 =  𝐴𝑁𝐷2 



Span program for «XOR» function 

 𝑓 𝑥1, 𝑥2 = 𝑥1  ⊕ 𝑥2 

 Pick the target vector: |𝑡 =
1
1

 

 if 𝑥1 = 1 then make available the vector 1
0

 

 if 𝑥1 = 0 then make available the vector 0
1

 

 if 𝑥2 = 1 then make available the vector 1
0

 

 if 𝑥2 = 0 then make available the vector 0
1

 

 
8 



Span program for «XOR» function 

 𝑓 𝑥1, 𝑥2 = 𝑥1  ⊕ 𝑥2 

 Vector space: 𝑉 = ℝ2 

 Basis vectors: {|0 , |1 } 

 Pick the target vector: |𝑡 = |0 + |1  

 𝑥1 = 1 :  { |0  } 

 𝑥1 = 0 :  { |1  } 

 𝑥2 = 1 :  { |0  } 

 𝑥2 = 0 :  { |1  }  

 
9 



Span program for «𝑂𝑅𝑛» function 

 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑥1 ∨ 𝑥2 ∨ ⋯ ∨ 𝑥𝑛 

 Vector space: 𝑉 = ℝ 

 Basis vectors: {|0 } 

 Pick the target vector: |𝑡 = |0  

 For every 𝑖 ∈ 1. . 𝑛 : 

 𝑥𝑖 = 1 :  { |0  } 

 𝑥𝑖 = 0 :  {} 

 
10 



Case 𝑓𝑃 𝑥 = 1: positive witness 

 A – column matrix of the available vectors 

 |𝑤  - the positive witness 

 𝑤𝑠𝑖𝑧𝑒1 𝑃, 𝑥 = min
|𝑤 : 𝐴|𝑤 =|𝑡 

|𝑤 2 

 𝑤𝑠𝑖𝑧𝑒1(𝑃, 𝑥) – essentially a sum of squared coefficients 

for those vectors that are used to express the target vector 

 𝑤𝑠𝑖𝑧𝑒1 𝑃 = max
𝑥∈{0,1}𝑛

𝑤𝑠𝑖𝑧𝑒1(𝑃, 𝑥) 

 

 

 

 

11 



«𝑂𝑅𝑛»: positive witness 

 Target vector: |𝑡 = |0  

 For every 𝑖 ∈ 1. . 𝑛 : 

 𝑥𝑖 = 1 :  { |0  } 

 𝑥𝑖 = 0 :  {} 

 If for some 𝑥𝑖 = 1 then the target vector can 
be expressed: |𝑡 = 1 ∗ |0   

 𝑤𝑠𝑖𝑧𝑒1 𝑃 ≤ 12  

 

12 



Case 𝑓𝑃 𝑥 = 0: negative witness 

 𝑉 𝑥 =  𝑉𝑓𝑟𝑒𝑒 ∪  𝑉𝑗, 𝑥𝑗𝑗∈ 1..𝑛  

 𝑉 ¬𝑥 =  𝑉𝑓𝑟𝑒𝑒 ∪  𝑉𝑗, (1−𝑥𝑗) 𝑗∈ 1..𝑛  

 |𝑤′  - the negative witness 

 Need to find such |𝑤′  that 𝑤′|𝑡 = 1 and 
∀ |𝑦 ∈ 𝑉 𝑥   |𝑤′ ⊥ |𝑦  

 wsize0 P, x = min
|𝑤′ 

 𝑤′|𝑦 2
|𝑦 ∈𝑉(¬ 𝑥)  

 𝑤𝑠𝑖𝑧𝑒0 𝑃 = max
𝑥∈{0,1}𝑛

𝑤𝑠𝑖𝑧𝑒0(𝑃, 𝑥) 

 13 



«𝑂𝑅𝑛»: negative witness 

 Target vector: |𝑡 = |0  

 For every 𝑖 ∈ 1. . 𝑛 : 

 𝑥𝑖 = 1 :  { |0  } 

 𝑥𝑖 = 0 :  {} 

 If all 𝑥𝑖 are equal to 0 then can take negative 
witness: |𝑤′ = |0  

 𝑤𝑠𝑖𝑧𝑒0 𝑃 ≤ 12 + 12 + ⋯ + 12 = 𝑛 

 

14 



Span program complexity 

 𝑤𝑠𝑖𝑧𝑒 𝑃 = 𝑤𝑠𝑖𝑧𝑒1 𝑃 ∗ 𝑤𝑠𝑖𝑧𝑒0(𝑃) 

 𝑄 𝑓  - quantum query complexity 

 𝑄 𝑓 = 𝑂 𝑤𝑠𝑖𝑧𝑒 𝑃𝑓  

 For «𝑂𝑅𝑛»: 

𝑤𝑠𝑖𝑧𝑒 𝑃 = 1 ∗ 𝑛 = 𝑛 

15 



Span program for «𝑂𝑅𝑛» function 

 If m = #𝑖: 𝑥𝑖 = 1  then the target vector can 

be expressed: |𝑡 =
1

𝑚
|0 +

1

𝑚
|0 + ⋯ +

1

𝑚
|0  

 𝑤𝑠𝑖𝑧𝑒1 𝑃 ≤ 𝑚
1

𝑚

2
=

1

𝑚
  

 𝑤𝑠𝑖𝑧𝑒0 𝑃 ≤ 12 + 12 + ⋯ + 12 = 𝑛 

 𝑤𝑠𝑖𝑧𝑒 𝑃 = 𝑤𝑠𝑖𝑧𝑒1 𝑃 ∗ 𝑤𝑠𝑖𝑧𝑒0 𝑃 =
𝑛

𝑚
 

16 



Graph bipartiteness 

 𝑛 – number of vertices in the given graph 

 We will construct an 𝜽 𝒏 𝒏  algorithm for testing if 

the given graph is bipartite 

 It’s asymptotically optimal 

 Any classical algorithm would need to consider all 
edges – in worst case Ω 𝑛2  queries 

 Main idea: look for an odd cycle 

 An undirected graph is bipartite iff it has no odd 
cycles 

17 



Graph bipartiteness 

 Vector space: 𝑉 = ℝ2𝑛2+1 

 Basis vectors: |0 ∪  𝑣𝑘,𝑏 |𝑣, 𝑘 ∈ 1. . 𝑛 , 𝑏 ∈ 0,1  

 Target vector: |𝑡 = |0   

 For every 𝑘 ∈ 1. . 𝑛 : can use the free vector 

|0 +  𝑘𝑘,0 +  𝑘𝑘,1  

 For every 𝑘 ∈ 1. . 𝑛 : 

 for every edge 𝑢 − 𝑣 (where input 𝑥𝑢,𝑣 =  1) make 
available the vectors:  

 𝑢𝑘,0 +  𝑣𝑘,1  and  𝑢𝑘,1 +  𝑣𝑘,0  

18 



Graph bipartiteness 

|𝑡  = |0 +  11,0 +  11,1 −  11,0 +  21,1 

+  21,1 +  31,0 −  31,0 +  11,1  

 

19 

𝑤𝑠𝑖𝑧𝑒1 𝑃, 𝑥 ≤ 12 + −1 2 + 12 + −1 2 = 4 
1 

2 

4 

5 
3 

1 

1 
1 



Graph bipartiteness 

|𝑡  = |0 +  11,0 +  11,1 −  11,0 +  21,1 

+
3

4
 21,1 +  31,0 

+
1

4
  21,1 +  41,0 −  41,0 +  51,1 

+  51,1 +  31,0  −  31,0 +  11,1  

 

20 

𝑤𝑠𝑖𝑧𝑒1 𝑃, 𝑥

≤ 12 + −1 2 +
3

4

2

+
1

4

2

+ −
1

4

2

+
1

4

2

+ −1 2 = 3 +
12

16
 

1 

2 

4 

5 
3 

1 

1 
3

4
 

1

4
 

1

4
 

1

4
 



Graph bipartiteness 

|𝑡 = 

    
1

3
|0 +  11,0 +   11,1 −  11,0 +   21,1 +  21,1 +  31,0 −  31,0 +  11,1  

+
1

3
|0 +  22,0 +   22,1 −  22,0 +  32,1 +  32,1 +   12,0 −  12,0 +   22,1  

+
1

3
|0 +  33,0 +   33,1 −  33,0 +  13,1 +  13,1 +   23,0 −  23,0 +   33,1  

 

21 

𝑤𝑠𝑖𝑧𝑒1 𝑃, 𝑥 ≤ 3 ∗
1

3

2

∗ 12 + −1 2 + 12 + −1 2

=
4

3
 < 3 +

12

16
 

1 

2 

4 

5 
3 

1 

1 
1 

0 

0 

0 𝒘𝒔𝒊𝒛𝒆𝟏 𝑷 = 𝑶(𝟏) 



Graph bipartiteness: complexity 

 Need to find such |𝑤′  that 𝑤′|0 = 1 and ∀ |𝑦 ∈
𝑉 𝑥   |𝑤′ ⊥ |𝑦  

 Must have 𝑤′| |0 +  𝑘𝑘,0 +  𝑘𝑘,1 = 0 

 For every 𝑘 set 𝑤′|𝑘𝑘,0 = 0 and 𝑤′|𝑘𝑘,1 = −1 

 For every u − 𝑣 set 𝑤′|𝑢𝑘,𝑏 = − 𝑤′|𝑣𝑘,1−𝑏  

 For any given vector 𝑣 value 𝑤′|𝑣 2 ≤ 1 

 The total number of vectors does not exceed 𝑛 + 𝑛3 

 𝑤𝑠𝑖𝑧𝑒0 𝑃 = 𝑂 𝑛3  

 𝑤𝑠𝑖𝑧𝑒 𝑃 = 𝑤𝑠𝑖𝑧𝑒1 𝑃 ∗ 𝑤𝑠𝑖𝑧𝑒0 𝑃 = 𝜽 𝒏 𝒏  

 22 



Graph connectivity 

 Main idea: is every vertex reachable from vertex 1? 

 Target vector: |𝑡 =  02 + |03 + ⋯ + |0𝑁  

 For every 𝑘 ∈ 2. . 𝑛 : can use the free vector 

|0𝑘 +  1𝑘 − |𝑘𝑘  

 For every 𝑘 ∈ 2. . 𝑛 : 

 for every edge 𝑢 − 𝑣 (where input 𝑥𝑢,𝑣 =  1) make 
available the vector: 

 𝑢𝑘 − |𝑣𝑘  

 𝒘𝒔𝒊𝒛𝒆 𝑷 = 𝜽 𝒏 𝒏  

23 



Eulerian cycle 

 Main idea: check for vertex with an odd degree 

 Target vector: |𝑡 =  |0  

 For every 𝑘 ∈ 1. . 𝑛  can use vectors: 

 free vetor |0 +  𝑘0,0 −  𝑘𝑛,1  

 For every 𝑖 ∈ 1. . 𝑛 : 

 If (𝑥𝑘,𝑖 = 1) then can use vectors: 

− 𝑘𝑖−1,0 +  𝑘𝑖,1  and − 𝑘𝑖−1,1 +  𝑘𝑖,0  

 if (𝑥𝑘,𝑖 = 0) then can use vectors: 

− 𝑘𝑖−1,0 +  𝑘𝑖,0  and − 𝑘𝑖−1,1 +  𝑘𝑖,1  

 

24 



Open problems 

 Graph collision: a graph is known beforehand but 
the vertex marking is not, check if two marked 
vertices are adjacent. Best lower bound is Ω 𝑛 . 

 Triangle finding: check if in a given graph there are 
three vertices which are pairwise adjacent. Best 
lower bound is Ω 𝑛 . 

 Perfect matching: check if can take  
exactly one entry with value «1» in  
each column and row from the graph’s  
adjacency matrix 

 

 

 

25 

1 

2 

4 

5 
3 



THANKS FOR LISTENING. QUESTIONS? 
 

26 



END. 
 

27 


