Span-program-based quantum query algorithms

Mg.sc.comp. Agnis Āriņš agnis.arins@lu.lv

Ratnieki, 2014. gada 3. oktobris

History of span programs

- □ First defined in 1993 by Karchmer, Wigderson
- Rediscovered in 2007, used for evaluating Boolean formulas by Reichardt, Špalek
- In 2010 Reichardt proved that span programs are equivalent to quantum query algorithms
- Used for s-t connectivity, triangle finding, kdistinctness, graph collision, ...
- Basis for Belovs's Learning Graph approach

Decision tree model

 \Rightarrow MAJ (x_1, x_2, x_3)

Quantum query model

Notation

 $\Box Span(S) = \left\{ \sum_{i=1}^{k} \lambda_i v_i \mid k \in N, v_i \in S, \lambda_i \in \mathbb{F} \right\}$

• Bra:
$$\langle u | = (c_1, c_2, \dots, c_n)$$
 Ket: $|v\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \cdots \\ a_n \end{pmatrix}$

 Inner product: $\langle u | v \rangle = a_1 c_1 + a_2 c_2 + \dots + a_n c_n$
 Norm: $||v|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$

Span program P on n bits

- Vector space: V
- Target vector: $|t\rangle$
- Sets of vectors: $V_{1,0}$, $V_{1,1}$, ... , $V_{n,0}$, $V_{n,1}$, V_{free}
- If $x_i = b$ then vectors $V_{i,b}$ are available
- $\mathsf{P} \text{ } \mathsf{ computes} \ f_P : \{0,1\}^n \to \{0,1\}$

$$f_P(x) = 1 \iff |t\rangle \in Span\left(V_{free} \cup \bigcup_j V_{j,x_j}\right)$$

1

Span program for «AND» function

Geometric example: $V = \mathbb{R}^2$

Span program for «XOR» function

 $\Box f(x_1, x_2) = x_1 \oplus x_2$

• Pick the target vector: $|t\rangle = \begin{pmatrix} 1\\ 1 \end{pmatrix}$

□ if $x_1 = 1$ then make available the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

□ if $x_1 = 0$ then make available the vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• if $x_2 = 1$ then make available the vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

• if $x_2 = 0$ then make available the vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Span program for «XOR» function

- $\Box f(x_1, x_2) = x_1 \oplus x_2$
- Vector space: $V = \mathbb{R}^2$
- Basis vectors: $\{|0\rangle, |1\rangle\}$
- Pick the target vector: $|t\rangle = |0\rangle + |1\rangle$

$$\Box x_1 = 1 : \{ |0\rangle \}$$

$$x_1 = 0 : \{ |1\rangle \}$$

$$x_2 = 1 : \{ |0\rangle \}$$

 $\Box x_2 = 0 : \{ |1\rangle \}$

Span program for (OR_n) function

$$\Box f(x_1, x_2, \dots, x_n) = x_1 \lor x_2 \lor \dots \lor x_n$$

- Vector space: $V = \mathbb{R}$
- Basis vectors: {|0}}
- \Box Pick the target vector: $|t\rangle = |0\rangle$
- □ For every $i \in [1..n]$:

$$x_i = 1 : \{ |0\rangle \}$$

 $x_i = 0 : \{ \}$

Case $f_P(x) = 1$: positive witness

- A column matrix of the available vectors
- $|w\rangle$ the positive witness
- $\square wsize_1(P, x) = \min_{|w\rangle: A|w\rangle = |t\rangle} ||w\rangle||^2$
- $WSiZe_1(P, x)$ essentially a sum of squared coefficients for those vectors that are used to express the target vector

$$\square wsize_1(P) = \max_{x \in \{0,1\}^n} wsize_1(P,x)$$

« OR_n »: positive witness

- $\Box \text{ Target vector: } |t\rangle = |0\rangle$
- □ For every $i \in [1..n]$:
 - $x_i = 1 : \{ |0\rangle \}$

$$x_i = 0 : \{\}$$

If for some x_i = 1 then the target vector can be expressed: |t⟩ = 1 * |0⟩
 wsize₁(P) ≤ 1²

Case $f_P(x) = 0$: negative witness

•
$$V(x) = V_{free} \cup \bigcup_{j \in [1..n]} V_{j,x_j}$$

• $V(\neg x) = V_{free} \cup \bigcup_{j \in [1..n]} V_{j,(1-x_j)}$
• $|w'\rangle$ - the negative witness
• Need to find such $|w'\rangle$ that $\langle w'|t\rangle = 1$ and
 $\forall |y\rangle \in V(x) \ (|w'\rangle \perp |y\rangle)$
• wsize₀(P, x) = min $\sum_{|w'\rangle} \sum_{|y\rangle \in V(\neg x)} \langle w'|y\rangle^2$
• $wsize_0(P) = \max_{x \in \{0,1\}^n} wsize_0(P, x)$

« OR_n »: negative witness

- $\Box \text{ Target vector: } |t\rangle = |0\rangle$
- □ For every $i \in [1..n]$:
 - $\Box x_i = 1 : \{ |0\rangle \}$

$$\Box x_i = 0 : \{\}$$

If all x_i are equal to 0 then can take negative witness: |w'⟩ = |0⟩
 wsize₀(P) ≤ 1² + 1² + ··· + 1² = n

Span program complexity

•
$$wsize(P) = \sqrt{wsize_1(P) * wsize_0(P)}$$

• $Q(f)$ - quantum query complexity
• $Q(f) = O\left(wsize(P_f)\right)$
• For (OR_n) :
 $wsize(P) = \sqrt{1 * n} = \sqrt{n}$

Span program for (OR_n) function

$$wsize(P) = \sqrt{wsize_1(P) * wsize_0(P)} = \sqrt{\frac{n}{m}}$$

- $\square n$ number of vertices in the given graph
- We will construct an $heta(n\sqrt{n})$ algorithm for testing if the given graph is bipartite
- It's asymptotically optimal
- Any classical algorithm would need to consider all edges in worst case $\Omega(n^2)$ queries
- Main idea: look for an odd cycle
- An undirected graph is bipartite iff it has no odd cycles

- Vector space: $V = \mathbb{R}^{2n^2+1}$
- □ Basis vectors: $\{|0\rangle\} \cup \{|v_{k,b}\rangle|v,k \in [1..n], b \in \{0,1\}\}$
- Target vector: $|t\rangle = |0\rangle$
- For every $k \in [1..n]$: can use the free vector $|0\rangle + |k_{k,0}\rangle + |k_{k,1}\rangle$
- For every $k \in [1..n]$:
 - for every edge u v (where input $x_{u,v} = 1$) make available the vectors:

$$|u_{k,0}\rangle + |v_{k,1}\rangle$$
 and $|u_{k,1}\rangle + |v_{k,0}\rangle$

$$\begin{aligned} |t\rangle &= \left(|0\rangle + \left| 1_{1,0} \right\rangle + \left| 1_{1,1} \right\rangle \right) - \left(\left| 1_{1,0} \right\rangle + \left| 2_{1,1} \right\rangle \right) \\ &+ \left(\left| 2_{1,1} \right\rangle + \left| 3_{1,0} \right\rangle \right) - \left(\left| 3_{1,0} \right\rangle + \left| 1_{1,1} \right\rangle \right) \end{aligned}$$

$$wsize_1(P, x) \le 1^2 + (-1)^2 + 1^2 + (-1)^2 = 4$$

$$\begin{aligned} |t\rangle &= \left(|0\rangle + \left|1_{1,0}\right\rangle + \left|1_{1,1}\right\rangle\right) - \left(\left|1_{1,0}\right\rangle + \left|2_{1,1}\right\rangle\right) \\ &+ \frac{3}{4}\left(\left|2_{1,1}\right\rangle + \left|3_{1,0}\right\rangle\right) \\ &+ \frac{1}{4}\left(\left(\left|2_{1,1}\right\rangle + \left|4_{1,0}\right\rangle\right) - \left(\left|4_{1,0}\right\rangle + \left|5_{1,1}\right\rangle\right) \\ &+ \left(\left|5_{1,1}\right\rangle + \left|3_{1,0}\right\rangle\right)\right) - \left(\left|3_{1,0}\right\rangle + \left|1_{1,1}\right\rangle\right) \\ &\text{wsize}_{1}(P, x) \\ &\leq 1^{2} + (-1)^{2} + \left(\frac{3}{4}\right)^{2} + \left(\frac{1}{4}\right)^{2} + \left(-\frac{1}{4}\right)^{2} \end{aligned}$$

$$\begin{aligned} |t\rangle &= \\ &\frac{1}{3} \Big(\Big(|0\rangle + |1_{1,0}\rangle + |1_{1,1}\rangle \Big) - \Big(|1_{1,0}\rangle + |2_{1,1}\rangle \Big) + \Big(|2_{1,1}\rangle + |3_{1,0}\rangle \Big) - \Big(|3_{1,0}\rangle + |1_{1,1}\rangle \Big) \Big) \\ &+ \frac{1}{3} \Big(\Big(|0\rangle + |2_{2,0}\rangle + |2_{2,1}\rangle \Big) - \Big(|2_{2,0}\rangle + |3_{2,1}\rangle \Big) + \Big(|3_{2,1}\rangle + |1_{2,0}\rangle \Big) - \Big(|1_{2,0}\rangle + |2_{2,1}\rangle \Big) \Big) \\ &+ \frac{1}{3} \Big(\Big(|0\rangle + |3_{3,0}\rangle + |3_{3,1}\rangle \Big) - \Big(|3_{3,0}\rangle + |1_{3,1}\rangle \Big) + \Big(|1_{3,1}\rangle + |2_{3,0}\rangle \Big) - \Big(|2_{3,0}\rangle + |3_{3,1}\rangle \Big) \Big) \end{aligned}$$

$$wsize_{1}(P, x) \le 3 * \left(\frac{1}{3}\right)^{2} * (1^{2} + (-1)^{2} + 1^{2} + (-1)^{2})$$
$$= \frac{4}{3} < 3 + \frac{12}{16}$$

 $wsize_1(P) = O(1)$

Graph bipartiteness: complexity

- Need to find such $|w'\rangle$ that $\langle w'|0\rangle = 1$ and $\forall |y\rangle \in V(x) \ (|w'\rangle \perp |y\rangle)$
- Must have $\langle w' | (|0\rangle + |k_{k,0}\rangle + |k_{k,1}\rangle) \rangle = 0$
- \Box For every k set $\langle w'|k_{k,0}
 angle=0$ and $\langle w'|k_{k,1}
 angle=-1$
 - For every u v set $\langle w' | u_{k,b} \rangle = -\langle w' | v_{k,1-b} \rangle$
- For any given vector v value $\langle w' | v \rangle^2 \leq 1$
- The total number of vectors does not exceed n + n³
 wsize₀(P) = O(n³)

 $wsize(P) = \sqrt{wsize_1(P) * wsize_0(P)} = \theta(n\sqrt{n})$

Graph connectivity

Main idea: is every vertex reachable from vertex 1?

- $\Box \text{ Target vector: } |t\rangle = |0_2\rangle + |0_3\rangle + \dots + |0_N\rangle$
- □ For every $k \in [2..n]$: can use the free vector $|0_k\rangle + |1_k\rangle - |k_k\rangle$

□ For every $k \in [2..n]$:

• for every edge u - v (where input $x_{u,v} = 1$) make available the vector:

$$|u_k\rangle - |v_k\rangle$$

 $\square wsize(P) = \theta(n\sqrt{n})$

Eulerian cycle

- Main idea: check for vertex with an odd degree
- $\Box \text{ Target vector: } |t\rangle = |0\rangle$
- □ For every $k \in [1..n]$ can use vectors:

• free vetor
$$|0\rangle + |k_{0,0}\rangle - |k_{n,1}\rangle$$

• For every $i \in [1..n]$:

Open problems

- Graph collision: a graph is known beforehand but the vertex marking is not, check if two marked vertices are adjacent. Best lower bound is $\Omega(\sqrt{n})$.
- Triangle finding: check if in a given graph there are three vertices which are pairwise adjacent. Best lower bound is Ω(n).
- Perfect matching: check if can take exactly one entry with value «1» in each column and row from the graph's adjacency matrix

5

4

1

3

THANKS FOR LISTENING. QUESTIONS?

END.

