
Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

Sequence analysis in linear time and compact space

Veli Mäkinen

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland

Presenting joint work with Djamal Belazzougui, Fabio Cunial, and Juha Kärkkäinen (ESA
2013) and work by Belazzougui (STOC 2014)

Estonian-Latvian Theory Days
October 3, 2014

1 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

MOTIVATION

Sequence analysis is the process of discovering some common features of one
or more strings. For example, maximal repeat of a string T = t1t2 · · · tn is a
substring that appears at least twice and whose left and right extensions
appear less times.

I X is not right-maximal in agtcXacgatXat but Xa is.

Maximal unique match (MUM) of two strings A and B is a substring that
occurs exactly ones in each string and whose left and right extensions do not
appear in both strings.

I Xa is a MUM of A = agtcXa and B = cgatXat.

2 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

MOTIVATION

Sequence analysis is the process of discovering some common features of one
or more strings. For example, maximal repeat of a string T = t1t2 · · · tn is a
substring that appears at least twice and whose left and right extensions
appear less times.

I X is not right-maximal in agtcXacgatXat but Xa is.

Maximal unique match (MUM) of two strings A and B is a substring that
occurs exactly ones in each string and whose left and right extensions do not
appear in both strings.

I Xa is a MUM of A = agtcXa and B = cgatXat.

2 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

SOLUTIONS

Suffix tree [Wei73,. . . ] for text of length n from alphabet of size σ:
I O(n log n) bits
I Myriads of sequence analysis problems in O(n) time

Compressed suffix tree [Sad07,. . . ]:
I O(n logσ) bits

I Myriads of sequence analysis problems in O(n logε n) time

Compressed representations for BWT [GV00,FM00,Sad00,. . . ]
I Kernel of compressed suffix trees

I A few sequence analysis problems in O(n logσ) time

Compact O(n logσ) bits space and linear time for myriads of problems?

3 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

SOLUTIONS

Suffix tree [Wei73,. . . ] for text of length n from alphabet of size σ:
I O(n log n) bits
I Myriads of sequence analysis problems in O(n) time

Compressed suffix tree [Sad07,. . . ]:
I O(n logσ) bits

I Myriads of sequence analysis problems in O(n logε n) time

Compressed representations for BWT [GV00,FM00,Sad00,. . . ]
I Kernel of compressed suffix trees

I A few sequence analysis problems in O(n logσ) time

Compact O(n logσ) bits space and linear time for myriads of problems?

3 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

SOLUTIONS

Suffix tree [Wei73,. . . ] for text of length n from alphabet of size σ:
I O(n log n) bits
I Myriads of sequence analysis problems in O(n) time

Compressed suffix tree [Sad07,. . . ]:
I O(n logσ) bits

I Myriads of sequence analysis problems in O(n logε n) time

Compressed representations for BWT [GV00,FM00,Sad00,. . . ]
I Kernel of compressed suffix trees

I A few sequence analysis problems in O(n logσ) time

Compact O(n logσ) bits space and linear time for myriads of problems?

3 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

SOLUTIONS

Suffix tree [Wei73,. . . ] for text of length n from alphabet of size σ:
I O(n log n) bits
I Myriads of sequence analysis problems in O(n) time

Compressed suffix tree [Sad07,. . . ]:
I O(n logσ) bits

I Myriads of sequence analysis problems in O(n logε n) time

Compressed representations for BWT [GV00,FM00,Sad00,. . . ]
I Kernel of compressed suffix trees

I A few sequence analysis problems in O(n logσ) time

Compact O(n logσ) bits space and linear time for myriads of problems?

3 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

OUR ESA 2013 RESULTS ENHANCED WITH BELAZZOUGUI STOC 2014

Compact representations for bidirectional BWT:
I O(n logσ) bits
I Many sequence analysis problems in O(n) time

I Main insights:
I Conceptual: Visiting suffix tree nodes through suffix link tree→No need for

LCP array
I Technical: Avoiding LessThan query on wavelet trees→ Constant time

bidirectional backward step
I Technical: Index construction in linear time in compact space (Belazzougui,

STOC 2014)

Theoretical / practical replacement of compressed suffix trees?

4 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

OUR ESA 2013 RESULTS ENHANCED WITH BELAZZOUGUI STOC 2014

Compact representations for bidirectional BWT:
I O(n logσ) bits
I Many sequence analysis problems in O(n) time

I Main insights:
I Conceptual: Visiting suffix tree nodes through suffix link tree→No need for

LCP array
I Technical: Avoiding LessThan query on wavelet trees→ Constant time

bidirectional backward step
I Technical: Index construction in linear time in compact space (Belazzougui,

STOC 2014)

Theoretical / practical replacement of compressed suffix trees?

4 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

OUR ESA 2013 RESULTS ENHANCED WITH BELAZZOUGUI STOC 2014

Compact representations for bidirectional BWT:
I O(n logσ) bits
I Many sequence analysis problems in O(n) time

I Main insights:
I Conceptual: Visiting suffix tree nodes through suffix link tree→No need for

LCP array
I Technical: Avoiding LessThan query on wavelet trees→ Constant time

bidirectional backward step
I Technical: Index construction in linear time in compact space (Belazzougui,

STOC 2014)

Theoretical / practical replacement of compressed suffix trees?

4 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

OUR RESULTS IN DETAIL

Representation 1 2 3
Implementation 1a 1b 2a [CPM 2010] 2b 3

Space (bits) n logσ+ n logσ+ 2n logσ+ 2n logσ+ O(n logσ)
+n + o(n) +o(n logσ) +o(n) +o(n logσ)

isLeftMaximal O(logσ) O(1) O(logσ) O(1) O(1)
isRightMaximal O(1) O(1) O(logσ) O(1) O(1)
enumerateLeft O(logσ) O(1) O(logσ) O(1) O(1)
enumerateRight O(logσ) O(1) O(1)
extendLeft O(logσ) O(σ) O(logσ) O(σ) O(1)
extendRight O(logσ) O(σ) O(1)

Applications MUM, SUS, MR, LB, MUM, SUS, MEM, SR, BBB
QP, IPS, IPK NSR, MAW, IPS, IPK

SUS: shortest unique substrings; MR: maximal repeats; LB: longest border; QP: quasiperiod; IPS: inner product of
substrings; IPK: inner product of k-mers; (N)SR: (near) supermaximal repeats; MAW: minimal absent words; BBB:

bidirectional b&b (supported also by Implementation 2a).

5 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

RELATED WORK

I Bidirectional BWT [Lametal09,SOG10]:
I Bidirectional backward step in O(σ) time [Lametal09] and in O(logσ) time

[SOG10].
I We now improve this to O(1) time (on ranges corresponding to suffix tree

nodes).

I Avoiding LCP array construction to solve maximal repeats [BBO12]:
I Visiting suffix tree nodes in level-wise order.
I Analysis uses Weiner links.
I We improve the space and time and show how to solve many related

problems.
I Our technique extends to synhronized search and enables indexing for

all-against-all problems.

I Alphabet-independent backward search [BN11,BN13]:
I We extend the technique for bidirectional backward search.

6 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

RELATED WORK

I Bidirectional BWT [Lametal09,SOG10]:
I Bidirectional backward step in O(σ) time [Lametal09] and in O(logσ) time

[SOG10].
I We now improve this to O(1) time (on ranges corresponding to suffix tree

nodes).

I Avoiding LCP array construction to solve maximal repeats [BBO12]:
I Visiting suffix tree nodes in level-wise order.
I Analysis uses Weiner links.
I We improve the space and time and show how to solve many related

problems.
I Our technique extends to synhronized search and enables indexing for

all-against-all problems.

I Alphabet-independent backward search [BN11,BN13]:
I We extend the technique for bidirectional backward search.

6 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

RELATED WORK

I Bidirectional BWT [Lametal09,SOG10]:
I Bidirectional backward step in O(σ) time [Lametal09] and in O(logσ) time

[SOG10].
I We now improve this to O(1) time (on ranges corresponding to suffix tree

nodes).

I Avoiding LCP array construction to solve maximal repeats [BBO12]:
I Visiting suffix tree nodes in level-wise order.
I Analysis uses Weiner links.
I We improve the space and time and show how to solve many related

problems.
I Our technique extends to synhronized search and enables indexing for

all-against-all problems.

I Alphabet-independent backward search [BN11,BN13]:
I We extend the technique for bidirectional backward search.

6 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

SUFFIX TREE, WEINER LINKS, SUFFIX-LINK TREE

G

A
G
C
G

C
G
C
#

A

A

G

A
G

C
G

C
G
C
#

C

G

C

G
C
#

A
G
A
G
C
G
C
G
C
#

A
G
A
G
C
G
C
G
C
#

G

A
G

C

C
G

A
G
C
G

C
G
C
#

C
G
C
#

G
A
G
C
G
C
G
C

#

A
#

G

C

#
G
C
#

G
A
G
C
G
C
G
C
#

A

C

#

G

C

# G

C

#

C G

G

C

G

A

G

C

G

A

G

A

A

CA

CG

G

C

16 1 7 3 9 15 5 13 11 6 2 8 14 4 12 10SA  =
T

#

ST
T

SLT
T

A

7 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL BWT

x #
y $yabx#
y abx#
x aby$yabx#
a bx#
a by$yabx#
b x#
# xaby$yabx#
b y$yabx#
$ yabx#

T=xaby$yabx

sorted suffixes of 
T# and Tr#

character preceding each suffix

Tr=xbay$ybax

x #
y $ybax#
b ax#
b ay$ybax#
y bax#
x bay$ybax#
a x#
# xbay$ybax#
a y$ybax#
$ ybax#

#<$<a<b<x<y

8 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL BWT

x #
y $yabx#
y abx#
x aby$yabx#
a bx#
a by$yabx#
b x#
# xaby$yabx#
b y$yabx#
$ yabx#

T=xaby$yabx Tr=xbay$ybax

x #
y $ybax#
b ax#
b ay$ybax#
y bax#
x bay$ybax#
a x#
# xbay$ybax#
a y$ybax#
$ ybax#

[i,j] [i’,j’]

L L’

I i′ = i = C[a]

I j′ = j = C[a + 1] = C[b]− 1
I Li...j = yx

I L′i′...j′ = bb

9 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL BWT

x #
y $yabx#
y abx#
x aby$yabx#
a bx#
a by$yabx#
b x#
# xaby$yabx#
b y$yabx#
$ yabx#

T=xaby$yabx Tr=xbay$ybax

x #
y $ybax#
b ax#
b ay$ybax#
y bax#
x bay$ybax#
a x#
# xbay$ybax#
a y$ybax#
$ ybax#

I i′ = i + LessThany(Li...j)

I j′ = i + LessThany+1(Li...j)− 1
I i = C[y] + ranky(L1...i−1) + 1
I j = C[y] + ranky(L1...j)

10 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

MAXIMAL UNIQUE MATCHES (MUMS)

THEOREM

Substring w is a maximal unique match (MUM) between s ∈ Σ∗ and t ∈ Σ∗ iff its
only occurrences are s[i, i + |w| − 1] and t[j, j + |w| − 1] and extending w left or
right looses one of the occurrences. We can discover all the τ maximal unique
matches between s and t in O(|s|+ |t|) time and
O((|s|+ |t|) log |Σ|+ τ log(|s|+ |t|)) bits of space.

I For example, on s = xaby and t = yabx mums are x,y,ab.

11 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ALGORITHM

Algorithm mums(M,bidirectionalBWTindex, i, j, i′, j′, I)
(1) left = rank0(I, j)− rank0(I, i− 1);
(2) right = rank1(I, j)− rank1(I, i− 1);
(3) if (left == 0 or right == 0)
(4) return ;
(5) if (!bidirectionalBWTindex.rightMaximal(i′, j′))
(6) return ;
(7) if (bidirectionalBWTindex.leftMaximal(i, j) and left == 1 and right == 1)
(8) M is a MUM;
(9) for each c ∈ bidirectionalBWTindex.EnumerateLeft(i, j) do
(10) (ii, jj, ii′, jj′)← bidirectionalBWTindex.extendLeft(c, i, j, i′, j′);
(11) mums(cM,bidirectionalBWTindex, ii, jj, ii′, jj′, I);
. . .
bidirectionalBWTindex, I← constructIndex(s$t);
mums("",0, |s|+ |t|, 0, |s|+ |t|, I);

12 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ALGORITHM

Algorithm mums(M,bidirectionalBWTindex, i, j, i′, j′, I)
(1) left = rank0(I, j)− rank0(I, i− 1);
(2) right = rank1(I, j)− rank1(I, i− 1);
(3) if (left == 0 or right == 0)
(4) return ;
(5) if (!bidirectionalBWTindex.rightMaximal(i′, j′))
(6) return ;
(7) if (bidirectionalBWTindex.leftMaximal(i, j) and left == 1 and right == 1)
(8) M is a MUM;
(9) Recursion with each possible cM. . .

1234567890
xaby$yabx

0987654321
[a]

SA 10 5 7 2 8 3 9 1 4 6
I 1 0 1 0 1 0 1 0 0 1
SA’ 10 5 8 3 7 2 9 1 4 6

[a]

13 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ALGORITHM

Algorithm mums(M,bidirectionalBWTindex, i, j, i′, j′, I)
(1) left = rank0(I, j)− rank0(I, i− 1);
(2) right = rank1(I, j)− rank1(I, i− 1);
(3) if (left == 0 or right == 0)
(4) return ;
(5) if (!bidirectionalBWTindex.rightMaximal(i′, j′))
(6) return ;
(7) if (bidirectionalBWTindex.leftMaximal(i, j) and left == 1 and right == 1)
(8) M is a MUM;
(9) Recursion with each possible cM. . .

1234567890
xaby$yabx

0987654321
[b]

SA 10 5 7 2 8 3 9 1 4 6
I 1 0 1 0 1 0 1 0 0 1
SA’ 10 5 8 3 7 2 9 1 4 6

[b]

14 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ALGORITHM

Algorithm mums(M,bidirectionalBWTindex, i, j, i′, j′, I)
(1) left = rank0(I, j)− rank0(I, i− 1);
(2) right = rank1(I, j)− rank1(I, i− 1);
(3) if (left == 0 or right == 0)
(4) return ;
(5) if (!bidirectionalBWTindex.rightMaximal(i′, j′))
(6) return ;
(7) if (bidirectionalBWTindex.leftMaximal(i, j) and left == 1 and right == 1)
(8) M is a MUM;
(9) Recursion with each possible cM. . .

1234567890
xaby$yabx

0987654321
[ab]

SA 10 5 7 2 8 3 9 1 4 6
I 1 0 1 0 1 0 1 0 0 1
SA’ 10 5 8 3 7 2 9 1 4 6

[ba]

15 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ANALYSIS

I Number of recursion steps can be bounded by the amount of explicit
and implicit Weiner links in suffix tree, which is linear.

I Claimed space bound follows, except for the use of stack:
I Must use explicit stack, and push the largest interval first; this guarantees

O(log n) depth.

I Bitvector I can be dropped using synchronized bidirectional search on
two indexes built on s and t separately.

I See the ESA 2013 paper for more involved applications.

16 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

ANALYSIS

I Number of recursion steps can be bounded by the amount of explicit
and implicit Weiner links in suffix tree, which is linear.

I Claimed space bound follows, except for the use of stack:
I Must use explicit stack, and push the largest interval first; this guarantees

O(log n) depth.

I Bitvector I can be dropped using synchronized bidirectional search on
two indexes built on s and t separately.

I See the ESA 2013 paper for more involved applications.

16 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL STEP IN O(1)?

I Bidirectional step requires to count how many symbols smaller than a
given symbol there are in a given BWT range (LessThan query).

I This can be supported by wavelet tree in O(logσ) time.

I We show that LessThan query cannot be supported faster than
O(logσ/ log log n) unless using superlinear space.

I However, our algorithms need LessThan query only on ranges
corresponding to suffix tree nodes.

I It turns out that O(1) time is possible in this restricted setting.

17 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL STEP IN O(1)?

I Bidirectional step requires to count how many symbols smaller than a
given symbol there are in a given BWT range (LessThan query).

I This can be supported by wavelet tree in O(logσ) time.

I We show that LessThan query cannot be supported faster than
O(logσ/ log log n) unless using superlinear space.

I However, our algorithms need LessThan query only on ranges
corresponding to suffix tree nodes.

I It turns out that O(1) time is possible in this restricted setting.

17 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

BIDIRECTIONAL STEP IN O(1)

I We extend the technique by Belazzougui and Navarro [BN11,BN13] that
supports backward step in constant time for suffix tree node ranges.

I Some ideas:

ACGATCGACGAGCTA[CGAGCTAGC]GATCGGCATACGCCGATCGTAC
C...C

A...A
G.....G

T.......T

I There is a representation taking O(n log logσ) bits that supports partial
rank queries in constant time (Belazzougui 2014).

I Monotone minimal perfect hash function is required for sorting to derive
LessThan answers for maintaining bidirectional BWT range.

I Hashing can be avoided if navigation is unidirectional.
I Deterministic linear time construction of BWT and unidirectional BWT

index in compact space.
I Most analyses in deterministic linear time.

18 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

DISCUSSION

I The techniques also give O(n) time and compact space construction for
compressed suffix trees (see Belazzougui, STOC 2014).

I However, bidirectional or unidirectional BWT index functionality is
required to obtain O(n) time sequence analysis on top of such
compressed suffix tree.

I There remains a class of sequence analysis tasks that can be solved in
O(n logε n) time using compressed suffix trees, for which bidirectional
BWT index is not sufficient.

I Mäkinen, Belazzougui, Cunial, and Tomescu. Genome-scale algorithm
design: Biological sequence analysis in the era of high-throughout sequencing.
Cambridge University Press. To appear early 2015.

19 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

DISCUSSION

I The techniques also give O(n) time and compact space construction for
compressed suffix trees (see Belazzougui, STOC 2014).

I However, bidirectional or unidirectional BWT index functionality is
required to obtain O(n) time sequence analysis on top of such
compressed suffix tree.

I There remains a class of sequence analysis tasks that can be solved in
O(n logε n) time using compressed suffix trees, for which bidirectional
BWT index is not sufficient.

I Mäkinen, Belazzougui, Cunial, and Tomescu. Genome-scale algorithm
design: Biological sequence analysis in the era of high-throughout sequencing.
Cambridge University Press. To appear early 2015.

19 / 19



Introduction Running Example: MUMs Bidirectional step in O(1) Discussion

DISCUSSION

I The techniques also give O(n) time and compact space construction for
compressed suffix trees (see Belazzougui, STOC 2014).

I However, bidirectional or unidirectional BWT index functionality is
required to obtain O(n) time sequence analysis on top of such
compressed suffix tree.

I There remains a class of sequence analysis tasks that can be solved in
O(n logε n) time using compressed suffix trees, for which bidirectional
BWT index is not sufficient.

I Mäkinen, Belazzougui, Cunial, and Tomescu. Genome-scale algorithm
design: Biological sequence analysis in the era of high-throughout sequencing.
Cambridge University Press. To appear early 2015.

19 / 19


	Introduction
	Running Example: MUMs
	Bidirectional step in O(1)
	Discussion

