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First-order language of graph theory

Vocabulary:

= equality of vertices
∼ adjacency of vertices

Syntax:

∧,∨,¬ etc. Boolean connectives
∃, ∀ quanti�cation over vertices

(no quanti�cation over sets).

Example

We can say that vertices x any y lie at distance no more than n:

∆1(x, y)
def
= x ∼ y ∨ x = y

∆n(x, y)
def
= ∃z1 . . . ∃zn−1

(
∆1(x, z1) ∧

∧∆1(z1, z2) ∧ . . . ∧∆1(zn−2, zn−1) ∧∆1(zn−1, y)
)
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Succinctness measures of a formula Φ

De�nition
The width W (Φ) is the number of variables used in Φ
(di�erent occurrences of the same variable are not counted).

Example

W (∆n) = n+ 1 but we can economize by recycling just three
variables:

∆′1(x, y)
def
= ∆1(x, y)

∆′n(x, y)
def
= ∃z(∆′1(x, z) ∧∆′n−1(z, y)).
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Succinctness measures of a formula Φ

De�nition
The depth D(Φ) (or quanti�er rank) is the maximum number of
nested quanti�ers in Φ.

I ∀x(∀y(∃z(. . .))) � depth 3; (∀x . . .) ∧ (∀y . . .) ∧ (∃z . . .) � depth 1

Example

D(∆′n) = n− 1 but we can economize using the halving strategy:

∆′′1(x, y)
def
= ∆1(x, y)

∆′′n(x, y)
def
= ∃z

(
∆′′bn/2c(x, z) ∧∆′′dn/2e(z, y)

)
.

Now D(∆′′n) = dlog ne and W (∆′′n) = 3.
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De�nition
A statement Φ de�nes a graph G if Φ is true on G but false on
every non-isomorphic graph H.

Example

Pn, the path on n vertices, is de�ned by

∀x∀y∆n−1(x, y) ∧ ¬∀x∀y∆n−2(x, y)

% diameter = n-1

∧ ∀x∀y1∀y2∀y3(x ∼ y1 ∧ x ∼ y2 ∧ x ∼ y3
→ y1 = y2 ∨ y2 = y3 ∨ y3 = y1)

% max degree < 3

∧ ∃x∃y∀z
(
x ∼ y ∧ (z ∼ x→ z = y)

)
% min degree = 1
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The logical depth and width of a graph

De�nition
D(G) is the minimum D(Φ) over all Φ de�ning G.
W (G) is the minimum W (Φ) over all Φ de�ning G.

Example

I W (Pn) ≤ 4

I D(Pn) < log n+ 3

Remark
W (G) ≤ D(G) ≤ n+ 1, where n = v(G)

v1

v2

v3 v4

∃x1∃x2∃x3∃x4∀y( ∧
1≤i<j≤4

xi 6= xj ∧
∨

1≤i≤4
y = xi ∧

x1 ∼ x2 ∧ x1 ∼ x3 ∧ x2 ∼ x3 ∧ x3 ∼ x4 ∧
∧ x1 6∼ x4 ∧ x2 6∼ x4

)
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How to determine W (G) or D(G)?

I D(G) = maxH 6∼=GD(G,H), where D(G,H) is the minimum
quanti�er depth needed to distinguish between G and H.
Similarly for W (G).

I D(G,H) and W (G,H) are characterized in terms of a
combinatorial game:

G and H are distinguishable with k variables
and quanti�er depth r i�
Spoiler wins the k-pebble Ehrenfeucht game
on G and H in r rounds.
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The k-pebble Ehrenfeucht game

Example 1: W (Pn, Pn+1) ≤ 3, D(Pn, Pn+1) ≤ log2 n+ 3

G = P9

H = P10

Duplicator's objective: to keep a partial isomorphism

Two players: Spoiler and Duplicator
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The k-pebble Ehrenfeucht game

Example 2: W (Pn) ≤ 3

G = P5 K1,3 in H
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Left aside from this talk

Consider n-vertex graphs.

I If G 6∼= H, then D(G,H) ≤ n. Can this be improved?

I What is D(G) if G is chosen at random?

I What is the minimum possible value of D(G)?

I How do the answers change if we restrict the number of
quanti�er alternations?

(joint work with Joel Spencer and Oleg Pikhurko)
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k-variable logic

Dk(G) denotes the logical depth of G in the k-variable logic
(assuming W (G) ≤ k).

For example, D3(Pn) ≤ log n+ 3.

A disturbing fact: We may need many variables even for very
simple graphs.

For example, W (K1,n) ≥ n because W (K1,n,K1,n+1) ≥ n.
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Logic with counting quanti�ers

∃m xΨ(x) means that there are at least m vertices x having
property Ψ.

The counting quanti�er ∃m contributes 1 in the quanti�er depth
whatever m.

Example

K1,n can now be de�ned by

∃n+1(x = x) ∧ ¬∃n+2(x = x) ∧
∃x∀y∀z(y 6= x ∧ z 6= x→ y ∼ x ∧ y 6∼ z)

Therefore, W#(K1,n) ≤ 3 and D3
#(K1,n) ≤ 3.
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Color re�nement algorithm

Initial coloring is monochromatic.

New color of a vertex = old color + old colors of all neighbours.

= { , { , }}
= { , { , , }}

Next re�nement.

= { , { , }} (absent in the second graph)

= { , { , }} (absent in the second graph)

= { , { , }}
= { , { , , }}
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Color re�nement algorithm

Theorem (Immerman, Lander 90)

Color Re�nement works correctly on G and every H i� W#(G) ≤ 2.

This is the case for

I all trees [Edmonds 65]

I almost all graphs [Babai, Erd®s, Selkow 82]
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k-dimensional Weisfeiler-Lehman algorithm

I 1-dim WL = the color re�nement algorithm

I k-dim WL colors V (G)k

I Initial coloring: C1(ū) = the equality type of ū ∈ V (G)k and
the isomorphism type of the spanned subgraph

I Color re�nement:
Ci(ū) = {Ci−1(ū), {(Ci−1(ū1,x), . . . , Ci−1(ūk,x))}x∈V },
where (u1, . . . , ui, . . . , uk)i,x = (u1, . . . , x, . . . , uk)
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The Weisfeiler-Lehman algorithm

I purports to decide if input graphs G and H are isomorphic:
I If G ∼= H, the output is correct,
I if G 6∼= H, the output can be wrong;

I has two parameters: dimension and number of rounds.

I Fixed dimension k =⇒ ≤ nk rounds =⇒ polynomial
running time.

I Fixed dimension and O(log n) rounds =⇒ parallel logarithmic
time.

Theorem (Cai, Fürer, Immerman 92)

The r-round k-dim WL works correctly on G and every H if
k = W#(G)− 1 and r = Dk+1

# (G)− 1.
On the other hand, it is wrong on (G,H) for some H if

k < W#(G)− 1, whatever r.
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The Weisfeiler-Lehman algorithm

Corollary (Cai, Fürer, Immerman 92)

Let C be a class of graphs G with W#(G) ≤ k for a constant k.
Then Graph Isomorphism for C is solvable in P .

Corollary (Grohe, V. 06)

1. Let C be a class of graphs G with Dk
#(G) = O(log n).

Then Graph Isomorphism for C is solvable in TC1 ⊆ NC2 ⊆ AC2.

2. Let C be a class of graphs G with Dk(G) = O(log n).
Then Graph Isomorphism for C is solvable in AC1 ⊆ TC1.
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Classes of graphs: Trees

I W#(T ) ≤ 2 for every tree T .

I D2
#(Pn) ≥ n

2 − 1

I one extra variable =⇒ logarithmic depth !

Theorem
If T is a tree on n vertices, then D3

#(T ) ≤ 3 log n+ 2.
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Isomorphism of trees (history revision)

Theorem
If T is a tree on n vertices, then D3

#(T ) ≤ 3 log n+ 2.

Testing isomorphism of trees is

I in Log-Space [Lindell 92]

I in AC1 [Miller-Reif 91]

I in AC1 if ∆ = O(log n) [Ruzzo 81]

I in Lin-Time by 1-WL (W#(T ) = 2) [Edmonds 65]

Miller and Reif [SIAM J. Comput. 91]: �No polylogarithmic parallel
algorithm was previously known for isomorphism of unbounded-
degree trees.�

However, the 3 log n-round 2-WL solves it in TC1 and is known
since 68 !
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Classes of graphs: Bounded tree-width, planar, interval

Theorem
For a graph G of tree-width k on n vertices

W#(G) ≤ k + 2 [Grohe, Mariño 99];

D4k+4
# (G) < 2(k + 1) log n+ 8k + 9 [Grohe, V. 06].

Theorem
For a planar graph G on n vertices

W#(G) = O(1) [Grohe 98].

If G is, moreover, 3-connected, then

D15(G) < 11 log n+ 45 [V. 07].

Theorem
For an interval graph G on n vertices

W#(G) ≤ 3 [Evdokimov et al. 00, Laubner 10];

D15
# (G) < 9 log n+ 8 [Köbler, Kuhnert, Laubner, V. 11].
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Graphs with an excluded minor

Theorem (Grohe 11)

For each F , if G excludes F as a minor, then

W#(G) = O(1).

Open problem

Is it then true that Dk
#(G) = O(log n) for some constant k?
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Constraint Satisfaction Problem (CSP)

Variables x1, x2, x3, x4, x5
Values xi ∈ {1, 2, 3}
Constraints x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x1,

x1 6= x5, x2 6= x5, x3 6= x5, x4 6= x5
Question: Is there an assignment of values to the

variables satisfying all constraints?

x5

x1 x2

x3x4

1

2 3

23
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x6

x1

x2

x3x4

x5

No!
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Constraint propagation

Methodolody: derivation instead of search

Example: 3-COLORABILITY.
We can choose an arbitrary edge and color it arbitrarily.

Derivation rules:
x = 1, y 6= x

y 6= 1
etc.

1,2,3

1,2,3 1,2,3

1,2,31,2,3

1,2,3
1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

1,2,3 1,2,3

1,2,31,2,3

1

1,2,3

1,2,3

1,2,3

1,2,31,2,3

1

2,3 2,3

2,32,3

1

2,3

2,3

2,3

2,32,3

1

2 2,3

2,32,3

1
2

2,3

2,3

2,32,3

1

2 3

2,33

1
2

3

2,3

2,33

1

2 3

23

1
2

3

2

23
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The Feder-Vardi paradigm:
a CSP = a Homomorphism Problem

For example, a graph G is 3-colorable i� there is a homomorphism
from G to K3 (notation: G→ K3).

1

2 3

23

1

23
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A logic and a game for the Homomorphism Problem

The following three conditions are equivalent:

I G 6→ H,

I some existential-positive formula distinguishes G from H,

I Spoiler has a winning strategy in the existential k-pebble game
on G and H for some k.

The existential k-pebble game on G and H is the version of the
k-pebble Ehrenfeucht game where

I Spoiler moves always in G,

I Duplicator must keeps a partial homomorphism.
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An example

Let Gn denote the wheel graph with n vertices.
If n is even, then Spoiler wins the existential game on Gn and K3

with 4 pebbles.

Spoiler Duplicator

1 2 3 4 1 2 3 4
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The triad: A logic, a game, an algorithm

Theorem (Kolaitis, Vardi 95)

Suppose that G 6→ H. The the following three conditions are
equivalent:

I W∃,+(G,H) ≤ k, i.e., G is distinguishable from H by an
existential-positive sentence with k variables;

I Spoiler wins the existential k-pebble game on G and H;

I k-Consistency Checking recognizes that G 6→ H.
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k-Consistency Checking (recasted)

Algorithmic problem

Given two �nite structures G and H, does Spoiler win the
existential k-pebble game on these structures?

I This is a relaxation of the homomorphism problem.
I For small k, it is commonly used as a heuristics approach.

A propagation-based algorithm makes derivations like

- winning positions for Spoiler
⇓

- a winning position too

(a position is a mapping of ≤ k vertices from V (G) into V (H))

Spoiler has a winning stategy ⇔ the uncolored graph is derivable.
Since there are at most N = v(G)kv(H)k positions, all derivations
can be generated in time Nk+1 (the wasteful version of
k-consistency checking). If k is �xed, this takes polynomial time.
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The time complexity of k-Consistency Checking

Theorem
The k-Consistency problem is solvable in

I time O(v(G)kv(H)k) = O(n2k) for each k [Cooper 89]

I but not in time O(n
k−3
12 ) for k ≥ 15 [Berkholz 12]

Question. What about arc consistency (k = 2)?

Remark. If k = 2, we consider directed graphs.

In practice: All arc consistency (k = 2) algorithms

I such as AC-1, AC-3, AC-3.1 / AC-2001, AC-3.2, AC-3.3,
AC-3d, AC-4, AC-5, AC-6, AC-7, AC-8, AC-∗

I and several parallel/distributed variants

are based on constraint propagation.
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Bounds for the propagation approach

Upper bounds for Arc Consistency

I Sequential: O(v(G)e(H) + e(G)v(H)), which implies O(n3).

I Parallel: O(depth(G,H)) ≤ O(v(G)v(H)), implies O(n2).

Theorem (Berkholz, V. 13)

Any sequential propagation-based arc consistency algorithm takes
time Ω(n3), and any such parallel algorithm takes time Ω(n2).
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The core of the proof

Lemma
There are directed graphs G and H with v(G) = v(H)− 1 = n
such that

I Spoiler wins the existential 2-pebble game on G and H;

I Duplicator can resist Ω(n2) rounds.

Remark. n2 + 1 rounds always su�ce for Spoiler.
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The 3-COLORABILITY problem

Given: a graph G
Decide: χ(G) ≤ 3?

Solvable: in time O(1.3289n) (Beigel-Eppstein 05)

not in time 2o(n), under the Exponential Time Hypothesis

A reminder: The non-3-colorability of wheel graphs with even
number of vertices can be established by k-consistency checking
with k = 4.

Question. What is the minimum k = k(n) such that k-consistency
checking is successful for all graphs with n-vertices?
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Dynamic width of the 3-colorability problem

De�nition
W (n) = {W∃,+(G,K3) : v(G) = n, χ(G) > 3}

Remark

I If W (n) ≤ k(n), then 3COL is solvable in time nO(k(n)).

I NP6=P ⇒ W (n) is unbounded.

Theorem (Ne²et°il, Zhu 96)

W (n) = Ω
(

log logn
log log logn

)
.

Remark
I Exponential Time Hypothesis =⇒ W (n) = Ω(n/ log n).

Theorem (Atserias, Dawar, V. 14)

W (n) = Ω(n).
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Dynamic width of 3COL over planar graphs

3COL of planar graphs is NP-complete, solvable in time 2O(
√
n) but,

under Exponential Time Hypothesis, not in time 2o(
√
n) (Marx 13).

De�nition
Wplanar(n) = max {W∃,+(G,K3) : G planar, v(G) = n, χ(G) > 3}.

Remark

I Wplanar(n) ≤ 5
√
n because tw(G) ≤ 5

√
n− 1 for planar G,

which allows Spoiler to use a divide-and-conquer strategy like
for the wheel graphs.

I Exponential Time Hypothesis ⇒ Wplanar(n) = Ω(
√
n/ log n).

Theorem (Atserias, Dawar, V. 14)

Wplanar(n) = Ω(
√
n).
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Conclusion

Our lower bounds show that Consistency Checking is not an
optimal approach to get an exact exponential algorithm for
3-COLORABILITY, also when only planar inputs are considered.

Open problem

Can Consistency Checking be competitive for

I 3-COLORABILITY for other classes of graphs,

I other constraint satisfaction problem with unbounded dynamic
width?

Thank you for your attention!
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