Optimisation of parity-check matrices of LDPC codes

Yauhen Yakimenka, Vitaly Skachek Institute of Computer Science, University of Tartu

Ratnieki, Latvia

October 5, 2014

▲ □ ▶ ▲ □ ▶ ▲ □

Quick intro into coding theory Problem description Existing results Our contribution

Quick intro into coding theory

イロン イロン イヨン イヨン

Quick intro into coding theory Problem description Existing results Our contribution

- Quick intro into coding theory
- Problem description

イロト イポト イヨト イヨト

Quick intro into coding theory Problem description Existing results Our contribution

- Quick intro into coding theory
- Problem description
- Existing results

(日) (同) (三) (三)

Quick intro into coding theory Problem description Existing results Our contribution

- Quick intro into coding theory
- Problem description
- Existing results
- Our contribution

(日) (同) (三) (三)

Quick intro into coding theory

- Problem description
- Existing results
- Our contribution

イロト イボト イヨト イヨト

Communication model

Noisy channel model

 $(\Sigma_{in}, \Sigma_{out}, Prob)$

 $Prob(a, b) = \mathsf{P} \{ b \text{ received} \mid a \text{ transmitted} \}$

イロト イポト イヨト イヨト

Communication model

Noisy channel model

$$(\Sigma_{in}, \Sigma_{out}, Prob)$$

 $Prob(a, b) = \mathsf{P} \{ b \text{ received} \mid a \text{ transmitted} \}$

▶ Binary erasure channel (BEC)

< A >

→ 3 → 4 3

Communication model

Noisy channel model

$$(\Sigma_{in}, \Sigma_{out}, Prob)$$

 $Prob(a, b) = \mathsf{P} \{ b \text{ received} \mid a \text{ transmitted} \}$

▶ Binary erasure channel (BEC)

• Example: $0110111 \rightarrow 01\varepsilon 0\varepsilon 11$

- A IB N - A IB

Linear (binary) block codes

Generator matrix

Linear code C is a subspace of \mathbb{F}_2^n G is not unique (every basis of subspace will work) C is denoted as [n, k, d]

< A >

A 3 b

Dual code

Dual code \mathcal{C}^{\perp} is orthogonal compliment of \mathcal{C}

$$\mathcal{C}^{\perp} = \{ \mathbf{c}' \in \mathbb{F}_2^n : \mathbf{c}' G^{\mathsf{T}} = 0 \}$$

 \mathcal{C}^{\perp} is also a binary linear code: $[n, n-k, d^{\perp}]$

イロト イポト イヨト イヨト

Parity-check matrix

• Another way to define C

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

イロン イロン イヨン イヨン

Parity-check matrix

- \blacktriangleright Another way to define ${\cal C}$
- $\blacktriangleright \ {\cal C}$ is a space of solutions ${\bf c}$ of

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$H\mathbf{c}^{\intercal} = 0$$

Parity-check matrix

- Another way to define \mathcal{C}
- $\blacktriangleright \ {\cal C}$ is a space of solutions ${\bf c}$ of

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix} \quad \triangleright \quad \operatorname{rank} H = n$$

$$H\mathbf{c}^{\intercal} = 0$$

rank H = n - k (but H can have more rows, which are redundant)

・ 同 ト ・ ヨ ト ・ ヨ ト

Parity-check matrix

- \blacktriangleright Another way to define ${\cal C}$
- $\blacktriangleright \ {\cal C}$ is a space of solutions ${\bf c}$ of

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$H\mathbf{c}^{\intercal} = 0$$

- ▶ rank H = n k (but H can have more rows, which are redundant)
- *H* is any matrix of rank n kwhose rows are codewords in \mathcal{C}^{\perp}

・ロト ・(型ト ・(ヨト ・(ヨト

Tanner graph

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$v_1$$
 v_2 v_3 v_4 v_5 v_6 v_7 c_1 c_2 c_3

► Bipartite graph: columns and rows of *H*

・ 同 ト ・ ヨ ト ・ ヨ ト

Tanner graph

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

- ► Bipartite graph: columns and rows of *H*
- Edge present if element in H is 1

・ロト ・(型ト ・(ヨト ・(ヨト

Tanner graph

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$v_1$$
 v_2 v_3 v_4 v_3 v_6 v_7
 c_1 c_2 c_3

- ► Bipartite graph: columns and rows of *H*
- Edge present if element in H is 1
- ► Variable nodes (v₁, v₂, ...) represent bits of codeword

▲ □ ▶ ▲ □ ▶ ▲ □

Tanner graph

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

- ► Bipartite graph: columns and rows of *H*
- Edge present if element in H is 1
- ► Variable nodes (v₁, v₂, ...) represent bits of codeword

イロト イボト イヨト イヨト

 Check nodes (c₁, c₂,...) represent parity requirements

- Quick intro into coding theory
- Problem description
- Existing results
- Our contribution

イロト イボト イヨト イヨト

Iterative decoding on BEC

・ロト ・ 同ト ・ ヨト ・ ヨ

Iterative decoding on BEC

Figure : Step 2 of 4

イロト イボト イヨト イヨト

Iterative decoding on BEC

э

(日) (同) (三) (三)

Iterative decoding on BEC

Yauhen Yakimenka Optimisation of parity-check matrices of LDPC codes

イロト イポト イヨト イヨ

Stopping sets

11/26

<ロ> (日) (日) (日) (日) (日)

Stopping sets

▶ In parity-check matrix

$$H = \begin{pmatrix} 1 & 1 & 1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 1 & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 1 & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix}$$

Stopping sets

 \blacktriangleright Decoder fails \Leftrightarrow stopping set is erased

イロト イボト イヨト イヨト

Stopping sets

- \blacktriangleright Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable

・ 同 ト ・ ヨ ト ・ ヨ ト

Stopping sets

- \blacktriangleright Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable

・ 同 ト ・ ヨ ト ・ ヨ ト

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for C

イロト イボト イヨト イヨト

Stopping sets

- \blacktriangleright Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for C
- ▶ Additional (redundant) rows could eliminate stopping sets

・ロト ・(型ト ・(ヨト ・(ヨト

ъ

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for C
- ▶ Additional (redundant) rows could eliminate stopping sets
- ► Every codeword of C induces stopping set ⇒ those not possible to eliminate

< ロ > < 同 > < 回 > < 回 > < 回 > <

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for C
- ▶ Additional (redundant) rows could eliminate stopping sets
- Every codeword of C induces stopping set \Rightarrow those not possible to eliminate
- \blacktriangleright Idea: use redundant H which eliminates all stopping sets of size < d

イロト イポト イヨト イヨト

-

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for C
- ▶ Additional (redundant) rows could eliminate stopping sets
- ► Every codeword of C induces stopping set ⇒ those not possible to eliminate
- \blacktriangleright Idea: use redundant H which eliminates all stopping sets of size < d
- Stopping redundancy ρ(C) is the minimum number of rows in H s.t. there are no stopping of size < d</p>

イロト 不得 とうせい きほう 二日

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- ▶ Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for C
- ▶ Additional (redundant) rows could eliminate stopping sets
- ► Every codeword of C induces stopping set ⇒ those not possible to eliminate
- \blacktriangleright Idea: use redundant H which eliminates all stopping sets of size < d
- Stopping redundancy ρ(C) is the minimum number of rows in H s.t. there are no stopping of size < d</p>
- Always achievable: $\rho(\mathcal{C}) \leq 2^{n-k} 1$

$$H = \begin{array}{c} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \end{array} \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \end{array} \right)$$

Stopping sets of size < d: {1,3,10}, {1,5,8}, {4,8,10}, {5,8,10}.

Example

No small stopping sets $\Rightarrow \rho(\mathcal{C}) \leq 9$

14/26

- Quick intro into coding theory
- Problem description
- Existing results
- Our contribution

イロト イボト イヨト イヨト

Han-Siegel-Vardy'08

Probabilistic approach

<ロ> (日) (日) (日) (日) (日)

Han-Siegel-Vardy'08

Probabilistic approach

Step 1

• Choose t random codewords of \mathcal{C}^{\perp} (no repetition)

< A >

→ 3 → 4 3

Han-Siegel-Vardy'08

Probabilistic approach

t codewords

Step 1

▶ Choose t random codewords of C[⊥] (no repetition)

→ 3 → < 3</p>

Find expectations of

Han-Siegel-Vardy'08

Probabilistic approach

t codewords

Step 1

- Choose t random codewords of \mathcal{C}^{\perp} (no repetition)
- Find expectations of
 - number of stopping sets left

< A >

→ ∃ → < ∃</p>

Han-Siegel-Vardy'08

Probabilistic approach

t codewords

Step 1

- ▶ Choose t random codewords of C[⊥] (no repetition)
- Find expectations of
 - number of stopping sets left

< A >

→ ∃ → < ∃</p>

rank deficiency

Han-Siegel-Vardy'08

Probabilistic approach

t codewords

Step 1

- ▶ Choose t random codewords of C[⊥] (no repetition)
- Find expectations of
 - number of stopping sets left

<日本

- rank deficiency
- ▶ Guaranteed existence

Han-Siegel-Vardy'08

Step 2

 Add one more random codeword of C[⊥] (no repetition)

・ 同 ト ・ ヨ ト ・ ヨ ト

Han-Siegel-Vardy'08

Step 2

 Add one more random codeword of C[⊥] (no repetition)

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Find expectations of

Han-Siegel-Vardy'08

Step 2

- Add one more random codeword of C[⊥] (no repetition)
- Find expectations of
 - decrease of number of stopping sets left

・ 同 ト ・ ヨ ト ・ ヨ ト

Han-Siegel-Vardy'08

Step 2

- Add one more random codeword of C[⊥] (no repetition)
- ▶ Find expectations of
 - decrease of number of stopping sets left

・ 同 ト ・ ヨ ト ・ ヨ ト

▶ *increase* of rank

Han-Siegel-Vardy'08

Step 2

- Add one more random codeword of C[⊥] (no repetition)
- Find expectations of
 - decrease of number of stopping sets left

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ *increase* of rank
- Guaranteed existence

Han-Siegel-Vardy'08

Iterate

<ロ> (日) (日) (日) (日) (日)

Han-Siegel-Vardy'08

イロト イボト イヨト イヨト

Han-Siegel-Vardy'08

t codewords

▶ Iterate

- Iterate
- Iterate

イロト イボト イヨト イヨト

Han-Siegel-Vardy'08

- Iterate
- ▶ Iterate
- ▶ Iterate
- Stop when there are no small stopping sets left and rank is n-k

イロト イボト イヨト イヨト

- Quick intro into coding theory
- Problem description
- Existing results
- Our contribution

(日) (同) (三) (三)

 Choose some first row(s) non-randomly and carefully

э

 τ , non-random

Main trick

- Choose some first row(s) non-randomly and carefully
- ... so that we know how many stopping sets left

▲ □ ▶ ▲ □ ▶ ▲ □

Main trick

- Choose some first row(s) non-randomly and carefully
- ... so that we know how many stopping sets left
- ▶ ... or can bound their number

・ 同 ト ・ ヨ ト ・ ヨ ト

Main trick

- Choose some first row(s) non-randomly and carefully
- ... so that we know how many stopping sets left
- ▶ ... or can bound their number
- And then apply technique of Han-Siegel-Vardy

Main theorem

Theorem: $\rho(\mathcal{C}) \leq \tau + \min_{t \geq r} \{t + \kappa_t\}$ where:

$$\kappa_{t} = \min \left\{ k \in \mathbb{N} : Q_{k}(\lfloor \mathcal{D}_{t} \rfloor) = 0 \right\}$$

$$Q_{k}(x) = P_{k}(P_{k-1}(\ldots P_{1}(x) \ldots))$$

$$P_{j}(x) = \left\lfloor x \left(1 - \frac{(d-1)2^{r-d+1}}{2^{r} - (t+\tau+j)} \right) \right\rfloor$$

$$\mathcal{D}_{t} = \sum_{i=1}^{d-1} u_{i} \prod_{j=\tau+1}^{t+\tau} \left(1 - \frac{i2^{r-i}}{2^{r} - j} \right)$$

$$+ \frac{1}{2^{t-r}} \left(1 + \frac{2/3}{2^{t-r+1} - 1} \right)$$

э

→ 3 → < 3</p>

Candidates for non-random rows

Just take some codewords of \mathcal{C}^{\perp} , calculate straightforward. E.g. some conventional H or some rows of it.

▲□▶ ▲ □▶ ▲ □▶

Candidates for non-random rows

Just take some codewords of \mathcal{C}^{\perp} , calculate straightforward. E.g. some conventional H or some rows of it. \Rightarrow too slow! (and not always good results for our method)

・ 同 ト ・ ヨ ト ・ ヨ ト

Candidates for non-random rows

Matrix of rows of weight d^{\perp} . One such row

$$d^{\perp}$$
 $n-d^{\perp}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Candidates for non-random rows

Matrix of rows of weight d^{\perp} . One such row

$$d^{\perp}$$
 $n-d^{\perp}$

covers(=eliminates) so many SS's of size i (i = 1, 2, ..., d - 1):

$$d^{\perp} \binom{n-d^{\perp}}{i-1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Candidates for non-random rows

Matrix of rows of weight d^{\perp} . One such row

$$d^{\perp}$$
 $n-d^{\perp}$

covers(=eliminates) so many SS's of size i (i = 1, 2, ..., d - 1):

$$d^{\perp} \binom{n-d^{\perp}}{i-1}$$

We could generalise to τ different rows of weight d^{\perp} using principle of inclusion-exclusion (PIE).

▲□▶ ▲ □▶ ▲ □▶

Numerical results

Table : Upper bounds on the stopping redundancy

	[24, 12, 8] Golay	[48, 24, 12] QR
Schwartz-Vardy'06, Th4	2509	4540385
Han-Siegel-Vardy'08, Th1	198	3655
Han-Siegel-Vardy'08, Th3	194	3655
Han-Siegel-Vardy'08, Th4	187	3577
Han-Siegel-Vardy'08, Th7	182	3564

イロト イポト イヨト イヨト

Numerical results

Table : Upper bounds on the stopping redundancy

	[24, 12, 8] Golay	[48, 24, 12] QR
Schwartz-Vardy'06, Th4	2509	4540385
Han-Siegel-Vardy,Th1	198	3655
Han-Siegel-Vardy,Th3	194	3655
Han-Siegel-Vardy,Th4	187	3577
Han-Siegel-Vardy, Th7	182	3564
$\tau = 1$	180	3538

イロト イポト イヨト イヨト

Numerical results

Table : Upper bounds on the stopping redundancy

	[24, 12, 8] Golay	[48, 24, 12] QR
Schwartz-Vardy'06, Th4	2509	4540385
Han-Siegel-Vardy, Th1	198	3655
Han-Siegel-Vardy, Th3	194	3655
Han-Siegel-Vardy, Th4	187	3577
Han-Siegel-Vardy, Th7	182	3564
$\tau = 1$	180	3538
$\tau = 2$	176	3509

< ロ > < 同 > < 回 > < 回 > < 回 > <

Numerical results

Table : Upper bounds on the stopping redundancy

	[24, 12, 8] Golay	[48, 24, 12] QR
Schwartz-Vardy'06, Th4	2509	4540385
Han-Siegel-Vardy, Th1	198	3655
Han-Siegel-Vardy, Th3	194	3655
Han-Siegel-Vardy, Th4	187	3577
Han-Siegel-Vardy, Th7	182	3564
$\tau = 1$	180	3538
$\tau = 2$	176	3509
$\tau = 3$	172	3477

. . .

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Norwegian-Estonian Research Cooperation Programme (grant EMP133)
- ▶ Estonian Research Council (grant IUT2-1)

イロト イボト イヨト イヨト

Dziakuj

・ロト ・日ト ・モト・・モト

2