Optimisation of parity-check matrices of LDPC codes

Yauhen Yakimenka, Vitaly Skachek Institute of Computer Science, University of Tartu

Ratnieki, Latvia
October 5, 2014

Outline

- Quick intro into coding theory

Outline

- Quick intro into coding theory
- Problem description

Outline

- Quick intro into coding theory
- Problem description
- Existing results

Outline

- Quick intro into coding theory
- Problem description
- Existing results
- Our contribution

Outline

- Quick intro into coding theory
- Problem description
- Existing results
- Our contribution

Communication model

- Noisy channel model

$$
\begin{aligned}
& \left(\Sigma_{\text {in }}, \Sigma_{\text {out }}, \operatorname{Prob}\right) \\
\operatorname{Prob}(a, b)= & \mathrm{P}\{b \text { received } \mid a \text { transmitted }\}
\end{aligned}
$$

Communication model

- Noisy channel model

$$
\begin{aligned}
& \left(\Sigma_{\text {in }}, \Sigma_{\text {out }}, \operatorname{Prob}\right) \\
\operatorname{Prob}(a, b)= & \mathrm{P}\{b \text { received } \mid a \text { transmitted }\}
\end{aligned}
$$

- Binary erasure channel (BEC)

Communication model

- Noisy channel model

$$
\begin{aligned}
& \left(\Sigma_{\text {in }}, \Sigma_{\text {out }}, \operatorname{Prob}\right) \\
\operatorname{Prob}(a, b)= & \mathrm{P}\{b \text { received } \mid a \text { transmitted }\}
\end{aligned}
$$

- Binary erasure channel (BEC)

- Example: $0110111 \rightarrow 01 \varepsilon 0 \varepsilon 11$

Linear (binary) block codes

Generator matrix

Linear code \mathcal{C} is a subspace of \mathbb{F}_{2}^{n}
G is not unique (every basis of subspace will work)
\mathcal{C} is denoted as $[n, k, d]$

Dual code

Dual code \mathcal{C}^{\perp} is orthogonal compliment of \mathcal{C}

$$
\mathcal{C}^{\perp}=\left\{\mathbf{c}^{\prime} \in \mathbb{F}_{2}^{n}: \mathbf{c}^{\prime} G^{\boldsymbol{\top}}=0\right\}
$$

\mathcal{C}^{\perp} is also a binary linear code: $\left[n, n-k, d^{\perp}\right]$

Parity-check matrix

- Another way to define \mathcal{C}

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

Parity-check matrix

- Another way to define \mathcal{C}
- \mathcal{C} is a space of solutions \mathbf{c} of

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

$$
H \mathbf{c}^{\top}=0
$$

Parity-check matrix

- Another way to define \mathcal{C}
- \mathcal{C} is a space of solutions \mathbf{c} of

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

$$
H \mathbf{c}^{\top}=0
$$

- $\operatorname{rank} H=n-k$ (but H can have more rows, which are redundant)

Parity-check matrix

- Another way to define \mathcal{C}
- \mathcal{C} is a space of solutions \mathbf{c} of

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

$$
H \mathbf{c}^{\top}=0
$$

- rank $H=n-k$ (but H can have more rows, which are redundant)
- H is any matrix of rank $n-k$ whose rows are codewords in \mathcal{C}^{\perp}

Tanner graph

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

- Bipartite graph: columns and rows of H

Tanner graph

$H=\left(\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right)$

- Bipartite graph: columns and rows of H
- Edge present if element in H is 1

Tanner graph

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

- Bipartite graph: columns and rows of H
- Edge present if element in H is 1
- Variable nodes $\left(v_{1}, v_{2}, \ldots\right)$ represent bits of codeword

Tanner graph

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

- Bipartite graph: columns and rows of H
- Edge present if element in H is 1
- Variable nodes $\left(v_{1}, v_{2}, \ldots\right)$ represent bits of codeword
- Check nodes $\left(c_{1}, c_{2}, \ldots\right)$ represent parity requirements

Outline

- Quick intro into coding theory
- Problem description
- Existing results
- Our contribution

Iterative decoding on BEC

Figure : Step 1 of 4

Iterative decoding on BEC

Figure: Step 2 of 4

Iterative decoding on BEC

Figure: Step 3 of 4

Iterative decoding on BEC

Figure: \quad Step 4 of 4

Stopping sets

- In Tanner graph

Stopping sets

- In Tanner graph

- In parity-check matrix

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & 1 & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
0 & 0 & 1 & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right)
$$

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for \mathcal{C}

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for \mathcal{C}
- Additional (redundant) rows could eliminate stopping sets

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for \mathcal{C}
- Additional (redundant) rows could eliminate stopping sets
- Every codeword of \mathcal{C} induces stopping set \Rightarrow those not possible to eliminate

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for \mathcal{C}
- Additional (redundant) rows could eliminate stopping sets
- Every codeword of \mathcal{C} induces stopping set \Rightarrow those not possible to eliminate
- Idea: use redundant H which eliminates all stopping sets of size $<d$

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for \mathcal{C}
- Additional (redundant) rows could eliminate stopping sets
- Every codeword of \mathcal{C} induces stopping set \Rightarrow those not possible to eliminate
- Idea: use redundant H which eliminates all stopping sets of size $<d$
- Stopping redundancy $\rho(\mathcal{C})$ is the minimum number of rows in H s.t. there are no stopping of size $<d$

Stopping sets

- Decoder fails \Leftrightarrow stopping set is erased
- Stopping sets undesirable
- Erasure of stopping sets of small size is more probable
- (!) Stopping sets are defined for H, not for \mathcal{C}
- Additional (redundant) rows could eliminate stopping sets
- Every codeword of \mathcal{C} induces stopping set \Rightarrow those not possible to eliminate
- Idea: use redundant H which eliminates all stopping sets of size $<d$
- Stopping redundancy $\rho(\mathcal{C})$ is the minimum number of rows in H s.t. there are no stopping of size $<d$
- Always achievable: $\rho(\mathcal{C}) \leq 2^{n-k}-1$

Example

$$
H=\begin{aligned}
& c_{1} \\
& c_{2} \\
& c_{3} \\
& c_{4} \\
& c_{5} \\
& c_{6} \\
& c_{7}
\end{aligned}\left(\begin{array}{llllllllll}
\mathbf{1} & 1 & \mathbf{0} & 1 & 1 & 0 & 1 & 1 & 1 & \mathbf{1} \\
\mathbf{1} & 1 & \mathbf{0} & 1 & 1 & 0 & 0 & 0 & 1 & \mathbf{1} \\
\mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 1 & 0 & 1 & 0 & \mathbf{1} \\
\mathbf{0} & 0 & \mathbf{1} & 1 & 1 & 0 & 1 & 1 & 0 & \mathbf{1} \\
\mathbf{0} & 0 & \mathbf{1} & 0 & 1 & 0 & 0 & 1 & 1 & \mathbf{1} \\
\mathbf{0} & 0 & \mathbf{0} & 1 & 1 & 0 & 0 & 1 & 0 & \mathbf{0} \\
\mathbf{1} & 0 & \mathbf{0} & 1 & 0 & 0 & 1 & 1 & 0 & \mathbf{1}
\end{array}\right)
$$

Stopping sets of size $<d$:
$\{1,3,10\},\{1,5,8\},\{4,8,10\},\{5,8,10\}$.

Example

$$
H^{\prime}=\begin{aligned}
& c_{1} \\
& c_{2} \\
& c_{3} \\
& c_{4} \\
& c_{5} \\
& c_{6} \\
& c_{7} \\
& c_{1}+c_{2}+c_{3} \\
& c_{2}+c_{3}
\end{aligned} \quad\left(\begin{array}{llllllllll}
\mathbf{1} & 1 & \mathbf{0} & 1 & 1 & 0 & 1 & 1 & 1 & \mathbf{1} \\
\mathbf{1} & 1 & \mathbf{0} & 1 & 1 & 0 & 0 & 0 & 1 & \mathbf{1} \\
\mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 1 & 0 & 1 & 0 & \mathbf{1} \\
\mathbf{0} & 0 & \mathbf{1} & 1 & 1 & 0 & 1 & 1 & 0 & \mathbf{1} \\
\mathbf{0} & 0 & \mathbf{1} & 0 & 1 & 0 & 0 & 1 & 1 & \mathbf{1} \\
\mathbf{0} & 0 & \mathbf{0} & 1 & 1 & 0 & 0 & 1 & 0 & \mathbf{0} \\
\mathbf{1} & 0 & \mathbf{0} & 1 & 0 & 0 & 1 & 1 & 0 & \mathbf{1} \\
\mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 1 & 1 & 0 & 0 & \mathbf{1} \\
\mathbf{0} & 1 & \mathbf{1} & 1 & 1 & 1 & 0 & 1 & 1 & \mathbf{0}
\end{array}\right)
$$

No small stopping sets $\Rightarrow \rho(\mathcal{C}) \leq 9$

Outline

- Quick intro into coding theory
- Problem description
- Existing results
- Our contribution

Han-Siegel-Vardy'08

Probabilistic approach

Han-Siegel-Vardy'08

Probabilistic approach
Step 1

- Choose t random codewords of \mathcal{C}^{\perp} (no repetition)

Han-Siegel-Vardy'08

Probabilistic approach
Step 1

- Choose t random codewords of \mathcal{C}^{\perp} (no repetition)
t codewords
- Find expectations of

Han-Siegel-Vardy'08

Probabilistic approach
Step 1

- Choose t random codewords of \mathcal{C}^{\perp} (no repetition)
t codewords
- Find expectations of
- number of stopping sets left

Han-Siegel-Vardy'08

Probabilistic approach
Step 1

- Choose t random codewords of \mathcal{C}^{\perp} (no repetition)
t codewords
- Find expectations of
- number of stopping sets left
- rank deficiency

Han-Siegel-Vardy'08

Probabilistic approach
Step 1

- Choose t random codewords of \mathcal{C}^{\perp} (no repetition)
t codewords
- Find expectations of
- number of stopping sets left
- rank deficiency
- Guaranteed existence

Han-Siegel-Vardy’08

Step 2

- Add one more random codeword of \mathcal{C}^{\perp} (no repetition)

Han-Siegel-Vardy'08

Step 2

- Add one more random codeword of \mathcal{C}^{\perp} (no repetition)
- Find expectations of

Han-Siegel-Vardy'08

Step 2

- Add one more random codeword of \mathcal{C}^{\perp} (no repetition)
- Find expectations of
- decrease of number of stopping sets left

Han-Siegel-Vardy'08

Step 2

- Add one more random codeword of \mathcal{C}^{\perp} (no repetition)
- Find expectations of
- decrease of number of stopping sets left
- increase of rank

Han-Siegel-Vardy'08

Step 2

- Add one more random codeword of \mathcal{C}^{\perp} (no repetition)
- Find expectations of
- decrease of number of stopping sets left
- increase of rank
- Guaranteed existence

Han-Siegel-Vardy’08

- Iterate

Han-Siegel-Vardy'08

t codewords

- Iterate
- Iterate

Han-Siegel-Vardy'08

- Iterate
- Iterate
- Iterate

Han-Siegel-Vardy'08

t codewords

- Iterate
- Iterate
- Iterate
- Stop when there are no small stopping sets left and rank is $n-k$

Outline

- Quick intro into coding theory
- Problem description
- Existing results
- Our contribution

Main trick

- Choose some first row(s) non-randomly and carefully

τ, non-random

Main trick

- Choose some first row(s) non-randomly and carefully
- ...so that we know how many stopping sets left

τ, non-random

Main trick

- Choose some first row(s) non-randomly and carefully
- ...so that we know how many stopping sets left
- ... or can bound their number

Main trick

τ, non-random
t, random

- Choose some first row(s) non-randomly and carefully
- ...so that we know how many stopping sets left
- ... or can bound their number
- And then apply technique of Han-Siegel-Vardy

Main theorem

Theorem: $\rho(\mathcal{C}) \leq \tau+\min _{t \geq r}\left\{t+\kappa_{t}\right\}$ where:

$$
\begin{aligned}
\kappa_{t} & =\min \left\{k \in \mathbb{N}: Q_{k}\left(\left\lfloor\mathcal{D}_{t}\right\rfloor\right)=0\right\} \\
Q_{k}(x) & =P_{k}\left(P_{k-1}\left(\ldots P_{1}(x) \ldots\right)\right) \\
P_{j}(x) & \left.=\left\lvert\, x\left(1-\frac{(d-1) 2^{r-d+1}}{2^{r}-(t+\tau+j)}\right)\right.\right\rfloor \\
\mathcal{D}_{t}= & \sum_{i=1}^{d-1} u_{i} \prod_{j=\tau+1}^{t+\tau}\left(1-\frac{i 2^{r-i}}{2^{r}-j}\right) \\
& +\frac{1}{2^{t-r}}\left(1+\frac{2 / 3}{2^{t-r+1}-1}\right)
\end{aligned}
$$

Candidates for non-random rows

Just take some codewords of \mathcal{C}^{\perp}, calculate straightforward. E.g. some conventional H or some rows of it.

Candidates for non-random rows

Just take some codewords of \mathcal{C}^{\perp}, calculate straightforward. E.g. some conventional H or some rows of it.
\Rightarrow too slow! (and not always good results for our method)

Candidates for non-random rows

Matrix of rows of weight d^{\perp}.
One such row

d^{\perp}	$n-d^{\perp}$

Candidates for non-random rows

Matrix of rows of weight d^{\perp}.
One such row

$$
\begin{array}{l|l}
\hline d^{\perp} & n-d^{\perp} \\
\hline
\end{array}
$$

covers(=eliminates) so many SS's of size $i(i=1,2, \ldots, d-1)$:

$$
d^{\perp}\binom{n-d^{\perp}}{i-1}
$$

Candidates for non-random rows

Matrix of rows of weight d^{\perp}.
One such row

d^{\perp}	$n-d^{\perp}$

covers(=eliminates) so many SS's of size $i(i=1,2, \ldots, d-1)$:

$$
d^{\perp}\binom{n-d^{\perp}}{i-1}
$$

We could generalise to τ different rows of weight d^{\perp} using principle of inclusion-exclusion (PIE).

Numerical results

Table: Upper bounds on the stopping redundancy

	$[24,12,8]$ Golay	$[48,24,12] \mathrm{QR}$
Schwartz-Vardy'06, Th4	2509	4540385
Han-Siegel-Vardy'08, Th1	198	3655
Han-Siegel-Vardy'08, Th3	194	3655
Han-Siegel-Vardy'08, Th4	187	3577
Han-Siegel-Vardy'08, Th7	182	3564

Numerical results

Table : Upper bounds on the stopping redundancy

	$[24,12,8]$ Golay	$[48,24,12] \mathrm{QR}$
Schwartz-Vardy'06, Th4	2509	4540385
Han-Siegel-Vardy,Th1	198	3655
Han-Siegel-Vardy,Th3	194	3655
Han-Siegel-Vardy,Th4	187	3577
Han-Siegel-Vardy,Th7	182	3564
$\tau=1$	180	3538

Numerical results

Table : Upper bounds on the stopping redundancy

	$[24,12,8]$ Golay	$[48,24,12] \mathrm{QR}$
Schwartz-Vardy'06, Th4	2509	4540385
Han-Siegel-Vardy,Th1	198	3655
Han-Siegel-Vardy,Th3	194	3655
Han-Siegel-Vardy,Th4	187	3577
Han-Siegel-Vardy,Th7	182	3564
$\tau=1$	180	3538
$\tau=2$	176	3509

Numerical results

Table: Upper bounds on the stopping redundancy

	$[24,12,8]$ Golay	$[48,24,12] \mathrm{QR}$
Schwartz-Vardy'06, Th4	2509	4540385
Han-Siegel-Vardy,Th1	198	3655
Han-Siegel-Vardy,Th3	194	3655
Han-Siegel-Vardy,Th4	187	3577
Han-Siegel-Vardy,Th7	182	3564
$\tau=1$	180	3538
$\tau=2$	176	3509
$\tau=3$	172	3477

Acknoledgements

- Norwegian-Estonian Research Cooperation Programme (grant EMP133)
- Estonian Research Council (grant IUT2-1)

Dziakuj

