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The sensitivity of fon x is the number of sensitive bits on x:
s(f,x) = {ilflxa, . ..
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The sensitivity of fis the maximum of sensitivities on a word
over all inputs: s(f) = maxs(f, w).
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Sensitivity: an example

Three-argument majority function

1 if at least two of xq, x9, x3 are 1,
f(Xl;X27X3) = .
0 otherwise.
Sensitivity of majority
@ s(f,011) = 2, because there are exactly two bits, namely xa
(f{011) # f{010)) and x3 (f{011) # A001)), whose change
would change the value of f,
e s(£,000) =0 s(£,001)=2 s(£010)=2 s(f,011)=2
s(f,100) =2 s(f110)=2 s(f,101)=2 s(f,111) =0;

@ we conclude that the sensitivity of fis 2.



Let x be a Boolean string of length n and let S be any subset of
indices, we will call S a “block”. By x°> we will mean x with all
the bits in S flipped.

Function fis sensitive to block S on x if f{x) # f(x°)

The three-argument majority function is sensitive to block 1,2
on 000, because f(0,0,0) # f(1,1,0).
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Block sensitivity of a Boolean function (cont.)

Block sensitivity on word

The block sensitivity bs(f, x) of fon input x is defined as the

maximum number k of disjoint subsets B, ..., B of
{1,2,...,n} such that for each B;, fix) # f(x5).

Block sensitivity of a function
The block sensitivity bs(f) of fis max bs(f, x).

A generalization of sensitivity

The relation to sensitivity is immediate: block sensivity
generalizes different bits to disjoint blocks.



The block sensitivity problem

The main open problem
Is there a constant ¢ such that bs(f) = O(s°(f))?

Progress on the block sensitivity problem

@ the best known upper bound of block sensitivity in terms
of sensitivity is exponential [Kenyon04];

@ the best separation is quadratic: bs(f) = %s(f)2 for
Rubinstein’s function [Rubinstein95];

e the gap has been exponential for more than 20 years.



The importance of the block sensitivity problem

A possible proof technique

@ note that for most functions it is very easy to determine
their sensitivity. We can’t say the same about other
complexity measures;

@ also note that block sensitivity is polynomially related to
almost every other complexity measure: deterministic
query complexity, quantum query complexity, certificate
complexity, etc.;

e if sensitivity and block sensitivity are polynomially related,
then we would have an immense number of new results
about other complexity measures.



Approaching the block sensitivity problem

The results of Kenyon and Kutin

@ this paper demonstrates the best upper bound (though
exponential). Their proof is via Fblock sensitivity, which
limits the block size to at most /.

@ at the end of the paper there is an interesting open
question Q about bsy and s;

@ even an improvement to the constants in the relationship
between bs; and s could lead to a subexponential upper
bound of block sensitivity in terms of sensitivity;

A possible attack — trying small examples
@ investigate small examples looking for improvements to @Q;

o if there is a small example that substantially improves the
solution to @ and we are able to generalize it, then we have
proved a new upper bound of block sensitivity!



Investigating Boolean functions of low degree

Exhaustive search
e the number of n variable Boolean functions is 22";
@ an exhaustive search is unfeasible for even n = 5;

@ a result obtained by exhaustive search: a short proof of
sub-quadratic separation between sensitivity and block
sensitivity.

An idea from cryptography — reducing the problem to SAT

@ build a SAT instance by considering 2" variables
corresponding to the values of f(x, xa, . .. xp);

e add additional variables and clauses for constraints s(f) <'s
and bs(f) > bs, for arbitrary constants s, bs;

@ use a SAT solver on the resulting problem instances.



Results

Results of computer search

e we found a 9-argument function with a somewhat simple
structure and bs(f) > %s(f)z;

@ our experiments give a complete characterization of
possible s and bs pairs for every n not exceeding 12.

The main result — improved separation

@ we were able to generalize our function
(bs(f) = %s(f)2 + 3s(f)), thereby improving the best known
separation;

@ our function also improves the best results about question
from paper by Kenyon and Kutin, however this
improvement is not strong enough to prove the
subexponential bound we seeked.



The main result

The main theorem

For every non-negative integer k there exists a Boolean function
fof n= (2k+ 1)? variables, for which s(f) = 2k + 1 and

bs(f) = (2k+ 1)(k+ 1).

Our function

An example of such a function is given by dividing variables
into 2k + 1 disjoint sections with 2k 4 1 variables in each
section. We define fto be 1 iff there is a section xi, xa, ..., X211
such that either:

(i) Xx2i—1 = x9; =1 for some 1 < j < k and all other x;’s are 0,
or

(ii) x2k+1 = 1 and all other x;’s are 0.



Our function

A concrete example: n = 9°

|1 2]3 4|5 6|7 8|9
110 0 0O 0|0 O0]O
210 0|0 0|0 O 0
3 0O 00 0]0 01O
410 00 0|0 OO0 O
510 0|1 0[{0 0|0 0] O0]| incomplete pair
6110 0|1 1({0 1|0 0|0 extra 1 bit
710 1|1 0|0 1[0 O] O0 | misaligned pair
810 0|0 0|0 OO0 O}]O all zeroes
9140 0|0 O[O0 0|0 OO0 all zeroes

A row is “good” if either:

@ there is exactly one 1 bit and it is in the last column;

o there is exactly two 1 bits, they are “paired” and the pair is
correctly aligned.



Proof of the main result

s(f) > 2k + 1, bs(f) > (2k+ 1)(k + 1)

@ we observe that for input w=0...0 we have
s(f,w) > 2k+ 1 and bs(f,w) > (2k+1)(k+ 1)

bs(f) = (2k+ 1)(k+ 1)
e assume we have already proved that s(f) = 2k + 1;

e assume that the maximal block sensitivity is achieved using
u blocks of size 1 and v blocks of size a least 2;

o from the sensitivity we have u < 2k + 1;

@ from the total number of variables we have
u+2v< (2k+1)%
o taken together:
bs(f) = u+v< 1((2k+1) + (2k+ 1)?) = (2k+ 1)(k+ 1).



Proof of the main result (cont.)

s(f) <2k+1
We consider two cases for arbitrary input w:
e flw)=1
o if there is only one “good” section, we have at most 2k + 1
choices for the bit to alter;

e if there are at least two “good” sections, we can’t change
the value of f by flipping just one input bit.

e flw)=0
e we prove that for each of the 2k + 1 sections there is at most
one bit whose change could flip the value of f;

e proof by case analysis (consider how 1 bits could be
distributed among pairs and unpaired bit).



Questions?

More details in our paper:

http://tinyurl.com/blocksensitivity
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