

Application generation for the simple
database browser based on the ER

diagram

Guntis Arnicans

University of Latvia

Faculty of Physics and Mathematics
Rainis Blvd. 19, Riga LV-1459, Latvia

garnican@lanet.lv

Abstract
This paper describes a development technique for the rough browser of a database. The
offered data browser or data management system can be generated automatically from the a
physical data model represented by an ER diagram. The ER diagram used to generate a
target application source text is described by common simple concepts and by some
additional attributes with default changeable values. All the ER diagram elements are
mapped to standard screen object groups and are the main components in the target system
screens. Various screen templates for generated applications are defined depending on the
entities, the relationships between them and an acceptable user interface. The generated
application can be used for database browsing, data manipulating, system prototyping, fast
developing of simple information systems and data analyzing.

1. Introduction

There are many strategies for information system development and project management

in nowadays. The development of very advanced CASE tools lets us use the Rapid

Application Development (RAD) methodology. This approach includes several steps -

business modeling, data modeling, process modeling, application generation, testing

and turnover [1]. In this paper the simple technique is described that allows to develop

specific information system - database browser and data manager. The main attention is

turned to the generation of application.

Many powerful tools already exist to assist in system development with RAD

technology, for instance, Oracle Designer/2000 [2], [3]. But practice shows that these

tools sometimes are not useful. The reasons are that they are expensive and require high

educated and trained specialists to work with them. And we have to work hard for some

time. The quality of the information system mostly depends on the data model.

Especially this data model (object model) is critical when we use Object Modeling

Technique (OMT) [4]. Let us assume that we already have designed the physical data

model for our database. Like a conceptual data model the physical data model can be

described by Entity-Relationship Diagram (ER diagram). This is popular instrument to

describe data model or database and these diagrams are known for most programmers.

Our goal is offer to the user a technique that allows to create a database browser

from the physical data model described by the ER diagram. What does the developer

have to do? He has to create a simple ER diagram for the existing or the planned

database. We do not care in whether he makes a serious analysis and design, whether he

creates the ER diagram “on the fly”. He obtains quickly generated database browser, a

simple information analysis and filtering tool, a data entering and editing tool, a

prototype for the most serious business application, simple database testing tool. Thus,

while the real system is developed, a robust information system is obtained.

2. ER diagram - the source for generation

2.1 The elements of the ER model

The ER diagram is a source for application generation. We consider only the ER

diagrams that represent physical data models. The main objects we manipulate are the

ER diagram descriptor (describing common features of database), the entities

(representing tables in our database), the relationships (representing the relations

between the entities), the fields (representing the data fields in the record of the physical

table).

Developers use various variants of the ER diagrams. Let us take a diagram that is

not too simple and not very complex. The ER diagram can be described by the object

model shown in the Figure 1. We choose the following elements in the ER diagram:

• diagram descriptor - DiagramName;

• entity - EntityName, [EntityType], PrimaryKey, UniqueKey, Index;

• field - FieldName, [FieldType], DataType, [Visibility], [ShortView], [LongView];

• relationship - EndEntity_1, EndEntity_2, Cardinality_1, Cardinality_2, Role_1,

Role_2, ForeignKey_1, ForeignKey_2.

The attributes in brackets are introduced for generation better applications. For

simplicity we assume that primary key and foreign key are represented only by one

field. In our simplified model we assume that an index is created from a field without

using any function. It is not so hard to expand the model to use a combination of fields

as the primary key (as the foreign key respectively) and a function of fields as the index.

Diagram_content

Relation
END1_CARDINALITY
END2_CARDINALITY
ROLE_1
ROLE_2

Record

Entity
ENTITY_NAME
[ENTITY_TYPE]

Field
FIELD_NAME
DATA_TYPE
[FIELD_TYPE]
[VISIBILITY]
[SHORT_VIEW]
[LONG_VIEW]

Relation_list

Entity_list
ER_diagram

Diagram_descriptor
DIAGRAM_NAME

has_as_INDEX

has_as_END1 has_as_END2

has_as_FK2

has_as_FK1

has_as_UK

has_as_PK

Figure 1 The conceptual object model for the ER diagram

2.2 Additional elements of the ER diagram

Let us introduce several new attributes for the ER diagram. These attributes provide the

additional information for the application generation program to generate a more

convenient application.

Entity type is a special attribute of an entity that allows us to generate

application screens with a specific information layout and data manipulation means.

This attribute is stated automatically and depends on the relationships between the

entities. The user can correct it while automatic type fixing.

Field type is an automatically calculated attribute of the field. If the field is

defined as the primary key of Entity via relationship has as PK (Figure 1) then the field

has type PK. Similarly we define type UK (via relationship has as UK) and type FK (via

relationship has as FK1 or has as FK2). Otherwise the field type is Attribute.

Visibility is a feature of a field. It states whether the information associated with

the field is or is not displayed to the user. The default value of visibility is TRUE for

fields with types UK, FK and Attribute but FALSE for type PK.

ShortView and LongView are field attributes that define how the entity record

can be best displayed on the screen.

2.3 Entity types

Entity type is an important concept in our application generation ideology. Let us define

the following entity types.

• Domain - list of standard data elements, allowed values for an attribute or an object

property.

• SimpleEntity - simple object that is determined by a set of attributes or standard data

elements.

• ComplexEntity - complex object is similar to SimpleEntity but it includes other

simple or complex objects.

• Link - logical relation between at least two simple or complex objects.

2.4 Algorithm for entity type determination

1. Scan through all the entities and fix those that have no field with type FK (foreign

key) and all the incoming ends of whose relationships are either of cardinality 1 or

0..1. We have to assign the type Domain or SimpleEntity to the fixed entities. The

type Domain is assigned by default.

2. Scan through all entities without a fixed type and fix any one that has fields with type

FK referenced only to entities with type Domain and all the incoming ends of whose

remaining relationships are either of cardinality 1 or 0..1. The type SimpleEntity is

assigned to the fixed entities.

3. Scan through all entities without a fixed type and fix each one which at that moment

is referenced by a foreign key from any entity with type SimpleEntity, ComplexEntity

or undefined type. The entity can also reference to itself. The type ComplexEntity is

assigned to the fixed entities.

4. Scan through all entities without a fixed type and fix any one that has at least two

fields with type FK that reference to entities with type SimpleEntity or

ComplexEntity. We have to assign the type Link or ComplexEntity to the fixed

entities. The type Link is assigned by default.

5. The type ComplexEntity is assigned to the any remaining entity without fixed type.

The user decides on the entity type (1. and 4. step) according to the semantics of

the entity and on how he wants to see the information on the screen.

2.5 Textual visualization of entity record

We need to define several textual visualizations of an entity record in our system. A

textual visualization of an entity record is mapping the field values to text. These texts

(or entity views) are used to display an entity on the screen. Let us define three

functions: shortView(), longView(), allFields(). The shortView() displays some of the

record fields in an ordered sequence. The order is defined by assigned an order number

to attribute ShortView. If the field is not included in short view the 0 is assigned to

ShortView. The similar approach is used for longView(). The allFields() displays all

fields.

2.6 ER diagram for example

The ER diagram for example is given in Figure 2. The attributes of each field are given

in the following sequence - field name, data type, field type, visibility (T for TRUE, F

for FALSE), ShortView, LongView.

Policy

ISN policy, NUM, PK, F, 0, 0
Policy_No, NUM(6), UK, T, 1, 1
Person, NUM(11), FK, T, 0, 2
Date_from, DATE, Attr, T, 0, 3
Date_to, DATE, Attr, T, 0, 4
Premium, DEC(10,2), Attr, T, 0, 0

Index
Policy No ASC
Date from DESC

Person

Identity No, NUM(11), PK, T, 0, 3
Name, CHAR(20), Attr, T, 2, 2
Surname, CHAR(20), Attr, T, 1, 1

Index
Surname ASC
Identity_No ASC

Model

ID_model, NUM(4), PK, T, 0, 0
Model, CHAR(30), Attr, T, 1, 1

Index
Model ASC

Auto

ISN_auto, NUM, PK, F, 0, 0
Registration_No, CHAR(6), UK, T, 1, 1
Model, NUM(4), FK, T, 0, 2
Year, NUM(4), Attr, T, 0, 0

Index
Registration_No ASC

Insured_auto

ISN_insur, NUM, PK, F, 0, 0
Policy, NUM, FK, T, 1, 2
Auto, NUM, FK, T, 2, 3
Order_number, NUM(2), Attr, T, 0, 1

Index
Order number ASC

issued_to_person

has_policy

FK Person

is_insured_with

relate_to_auto
FK Auto

covers_insured_auto

is_covered_by_policy
FK Policy

is_for_auto

has_model
FK Model

ComplexEntity

Link SimpleEntity

Domain

SimpleEntity

Figure 2 ER diagram for example

3. Application generation

The general idea of generation is to create a system with a predefined user interface and

functionality. The features of the system depend on the generator. We can generate the

whole application for the ER diagram or only some components for this application.

3.1 Screens and menu system

The quality and usefulness of the generated system depends mainly on the generated

screen system. Let us define several standard screens that allow us to handle data in the

database. The basic generation principle in our approach is to generate the specific data

editor for one or several tables connected by relationships. We generate a set of related

screens and this enables direct transition from one screen to another.

The primary objects in our system are entities and relationships between them.

We define some screen types with different user interface and different functionality for

any entity or relationship. For instance, we can display on the screen entity, links to

other entities (relationships in the ER model), information about related entities or

display related entities by some relationship. The screens of all types are generated for

each entity (accordingly to entity type) and for each relationship if the generation

options do not define another behavior.

The menu provides access to any generated screen and standard operation

defined for any application. The screens are organized in a hierarchy for easy

orientation.

3.2 Screen components

Every screen logically consists of two large sets with different screen objects.

• Information group - screen objects that display information stored in the database

and objects that are generated from the ER model. This group mainly consists from

table fields and relations between entities. The basic information subgroups are:

Field group (screen objects that display visible record fields), Entity presentation

group (screen objects that display the record of the entity or the list of records),

Relationship presentation group (screen objects that display relationship between

entities), Order button group (radio button group that determines the order in what

records are ordered).

• Management group - screen objects that provide additional management over the

data stored in the database. Their generation depends on the screen type. The

following management subgroups are defined: Edit button group (a group of

buttons for entity record editing - New, Edit, Save, Delete, Cancel buttons), Locate

button group (a group of buttons for locating the desirable record - First, Next,

Previous, Last, Find buttons), Print button (a button for printing the current record

or a record list), OK button (a button for leaving the window), Control button

group (specific buttons included in the screens of specific type).

4. Mapping ER model objects to application objects

4.1 Mapping sequence

A rough algorithm for application generation is the following.

• Map the ER diagram name to application name.

• Generate the screens for each entity (all screen types allowed for given entity type):

1. Generate screen name from entity name.

2. Generate each information subgroup needed for the given screen type. The

layout of this group (horizontal, vertical, tabular or other) is not the subject of

this paper.

a) Generate all field groups for given entity.

b) Generate information about all related entities via foreign keys.

c) Generate information about all related entities via relationship without a

foreign key at the end of given entity.

d) Generate order button group for given entity.

3. Generate all management subgroups necessary for the given screen type.

• Generate screens of all allowed types for each relationship.

1. Generate screen name from related entity names and role names.

2. Generate information group as for the entity screens.

3. Generate management group as for the entity screens.

• Generate menu system organized by screen types. The deepest menu items are

generated from the entity name (for entity based screen) or from two entity names

and role names (for relationship based screen). The menu item will open the window

for the specified screen type and entity (or relationship) as the central object.

• Generate additional menu items for standard operations.

4.2 Field mapping

Attribute header: Value_with_field_data_type

A field with type Attribute maps to screen

object group AttributeInfo (Figure 3). Figure 3 Screen object group AttributeInfo

Attribute header is TextBox object with value generated from FieldName and EditBox

object contains the value with type defined by field DataType. The EditBox length

depends on the data type but is limited by some reasonable maximal length. If necessary

scrolling through field is provided.

A field with type PK (primary key)

maps to screen object group PkInfo (Figure

4). It is similar to AttributeInfo but it also has

the button Gen. The user can manually enter a value for the record primary key or

generate a value automatically by pressing the button Gen. Key generation depends on

the selected default rule. When the user leaves EditBox the system checks whether the

value is unique.

PK header: Value_with_field_data_type Gen

Figure 4 Screen object group PkInfo

A field with type UK (unique key) maps

to screen object group UkInfo (Figure 5). This

group is similar to the screen object group PkInfo.

UK header: Value_with_field_data_type Gen

Figure 5 Screen object group UkInfo

A field with type FK (foreign key) maps to

screen object group FkInfo (Figure 6). The content

of this group depends on the screen type,

relationship type and connected entity type. Fk header is TextBox object with value

generated from FieldName. CheckBox is an optional element and is generated when

corresponding relationship at the opposite end has cardinality 0..1, otherwise

(cardinality is 1) CheckBox is not generated. We can assign an empty value to the

foreign key field by turning off CheckBox. EntityInfo is another screen object group (see

Entity presentation). The button Go is optional and its generation depends on the screen

type.

X (EntityInfo) GoFK header:

Figure 6 Screen object group FkInfo

4.3 Entity presentation

An instance of entity is represented by screen object group EntityInfo. Let us define

several subgroups for EntityInfo.

Entity with type Domain is

represented by DomainInfo (Figure 7).

ComboBox provides the selection of

domain value and shows the current value. This screen object is obligatory part of the

group. EditBox Domain_key is optional. It is generated by the following rules. At first,

Domain_valueDomain_key

Figure 7 Screen object group DomainInfo

if entity has the visible unique key then Domain_key gets the data type from this field.

Otherwise, if entity has the visible primary key then it gets the data type from this field.

If entity has no visible unique or primary key then EditBox is not generated. Both

objects always reference to the same table record. EditBox can be used for selecting the

domain value by entering the key in the EditBox. Domain_value is the entity

representing text depending on the default text function.

Entity with type SimpleEntity or

ComplexEntity is presented by EntityTextInfo

(Figure 8). TextBox contains the entity

representing text depending on the default text

generation function.

Entity_text

Figure 8 Screen object EntityTextInfo

Several similar entities with type

SimpleEntity or ComplexEntity are presented by

EntityListInfo (Figure 9). ListBox contains

entities representing texts depending on the

default text generation function. EntityListInfo

represents also entities with the type Link but in the text generation function can exclude

one field with type FK.

List_of_entity_texts

Figure 9 Screen object EntityListInfo

4.4 Relationship representation

One direction of relationship is represented

by RelationshipEndInfo (Figure 10). Let

us suppose that we represent relationship

from Entity_1 to Entity_2 with role Role_1. TextBox Relation_role contains text

‘Role_1’ and TextBox Relation_end contains text ‘Entity_2’. Button Go provides going

to the screen that represents entity Entity_2.

Relation_role Relation_end Go

Figure 10 Screen object RelationshipEndInfo

4.5 Mapping of the indexes

If the entity has at least one index then all indexes are

mapped to Order button group represented by

OrderButtonGroup (Figure 11). The first button None

allows to remove any previously used record sequence.

Every next button corresponds to some index.

Ordered by:

None

Index 1

Index 2

Figure 11 OrderButtonGroup

4.6 Traversing through screens

Traversing through screens is performed by button Go. This button is usually attached to

the screen object group representing the entity. The button brings us to another screen

that belongs to this entity. The button can work in two modes - with filter or without

one. If the filter option is chosen then in the newly opened screen we can access only

those records that are logically tied with the record or records in the previous screen. For

instance, if we fix any car model in the table Model then in the table Auto only cars with

this model are accessible.

5. Screen types

The design of screen types depends on the user’s needs. Let us define screen templates

that can be regarded as basic screen types. The screen examples correspond to Figure 2.

• Simple entity view

This screen type can be used for the

representation of any entity (Figure

12). The information group contains

all visible field groups and

OrderButtonGroup if any index is

defined. The management group

contains Edit button group, Locate

button group, Print button, OK button.

Model

ID_model:

Model:

1346

Ford_Escort

|<-- <-- --> -->| Find

New Edit Save Cancel

OKPrint

No order

Model

Delete

Ordered by:
Gen

Figure 12 Screen for entity Model

• Entity view extension with links

This screen extension can be added to screens

of entities with type SimpleEntity or

ComplexEntity. All entities that have type

Link and are directly connected via

relationship with the given entity are shown

on the screen. The presentation is performed

by screen object groups RelationshipEndInfo

and EntityListInfo. Figure 13 contains a

screen fragment for the entity Policy with

insured cars (LongView option is used) for the current policy.

Policy No: 005781

Date from:

Date to:

Premium:

Person: X GoBrown John 03076012478

01.12.97

30.11.98

47.12

covers_insured_auto Insured auto Go

1 AB1299 Ford_Escort
2 CZ5 Opel_Ascona

Figure 13 Fragment of screen for entity

Policy

• Entity view extension with relations

This screen extension can be added to the screens with

types Domain, SimpleEntity or ComplexEntity. We

represent all relationships that have foreign key at the

opposite end (it means that the other entity references to

the given entity via foreign key) and the corresponding

entities. For the presentation screen object groups

RelationshipEndInfo, EntityTextInfo or EntityListInfo are used. All the policies

(LongView option is used) are displayed for the current person in Figure 14.

Identity No:

JohnName:

BrownSurname:

03076012478

has_policy Policy Go

005781 01.12.97 30.11.98
010014 05.12.97 04.12.98

Figure 14 Fragment of screen for

entity Person

• Simple link view

This screen is the special view to the entities with the

type Link that links together exactly two entities with

type SimpleEntity or ComplexEntity (Figure 15). The

ShortView option is used to represent linked entities in

EntityListInfo. A special Control button group

determines the main ListBox. In this case for a fixed

policy 005781 all insured cars are displayed in the other ListBox with label Auto.

is covered by policy Policy

relate to auto Auto

Order number: 2

Go

Go
AB1299
CZ5

005781
005782

o

Figure 15 Fragment of screen for

entity Insured auto

• Embedded entities view

This screen type is useful only for the entity with type ComplexEntity. Let us take

Simple entity view as a base for such an entity. Instead of each field group FkInfo we

incorporate all visible fields from the related entity. We can imagine each embedded

entity as a subwindow where it is displayed with Embedded entities view for complex

entity or Simple entity view for the simple entity. E.g., in Figure 13 the objects group

with header Person is replaced by three screen object groups - Identity_No, Name,

Surname from entity Person. During the generation process we must beware of cyclic

embedding and stop embedding when we discover the

cycle. has model Model

is for auto Auto

Go

Go

AB1299

Ford Escort
Ford Fiesta

AA4152

o

• Relationship view

This screen provides a special view to relationship and

entities connected by it. Related entity is represented by

RelationshipEndInfo and EntityListInfo. The main

entity is selected by the radio button. Figure 16 shows

the fragment for relationship [Model] is_for_auto /

Figure 16 Fragment of screen for
relationship between entities Model

and Auto

has_model [Auto] with ShortView option.

6. Conclusion and future directions

This approach is based on the common ER diagram elements mapping to some screen

object constructs. It is not hard to create templates for generation - the standard code for

the whole screen and the standard SQL based code fragments for each generated screen

object group. Generation basically is code compiling from prepared code templates. This

technique partly is applied in practice - the real business applications are developed but

screen code is written by hand.

This approach has several future directions that seem very interesting. The

screens can be generated dynamically while application is running. E.g., the appropriate

HTML page can be generated and displayed. This improvement enables the information

view to be changed dynamically.

An ER diagram can be described by context-free grammar (E.g., in BNF

notation). The generator is an interpreter that reads the ER diagram as a program and

creates a source code for the screens [6]. Other graphical tools, e.g., GRADE [5] can be

used to prepare the ER diagram as input statements according to this grammar for the

generator.

7. References

[1] Tucker, A.: The Computer Science and Engineering Handbook, CRC PRESS, 1997.

[2] Billings, C., Billings, M., Tower, J.: Rapid Application Development with Oracle

Designer/2000, Addison-Wesley, 1997.

[3] Anderson, W., Wendelken, D.: The Oracle Designer/2000 Handbook, Addison-

Wesley, 1997.

[4] Rumbaugh, J.: Object-Oriented modeling and Design, Prentice-Hall, 1991.

[5] Barzdins, J., Kalnins, A., Podnieks, K. et al.: GRADE Windows: an Integrated

CASE Tool for Information System Development, Proceedings of SEKE’94, pp.54-

61, 1994.

[6] Arnicane, V., Arnicans, G., Bicevskis, J.: Multilanguage Interpreter, Proceedings of

the Second International Baltic Workshop, pp.173-174, 1996.

	1. Introduction
	2. ER diagram - the source for generation
	2.1 The elements of the ER model
	2.2 Additional elements of the ER diagram
	2.3 Entity types
	2.4 Algorithm for entity type determination
	2.5 Textual visualization of entity record
	2.6 ER diagram for example

	3. Application generation
	3.1 Screens and menu system
	3.2 Screen components

	4. Mapping ER model objects to application objects
	4.1 Mapping sequence
	4.2 Field mapping
	4.3 Entity presentation
	4.4 Relationship representation
	4.5 Mapping of the indexes
	4.6 Traversing through screens

	5. Screen types
	6. Conclusion and future directions
	7. References

