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Abstract. In this article we examine strictly convex metric space
and strictly convex metric space with convex round balls. These ob-
jects generalize well known concept of strictly convex Banach space.
We prove fixed point theorems for nonexpansive, quasi-nonexpansive
and asymptotically nonexpansive mappings in strictly convex metric
space with convex round balls. These results extend previous results
of R. de Marr, F. E. Browder, W. A. Kirk, K. Goebel, W. G. Dotson,
T. C. Lim and some others.
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1 Introduction

We can define convexity in the ordinary sense only in vector space. In the
bibliography we find several possibilities as concept of convexity of vector
space transfer to space with metric or topology. What properties of convex-
ity are essential? From works K. Menger [20], T. Botts [2], W.L. Klee [15],
D.C. Kay and E.W. Womble [11], M. van de Vel [25] solid indications are
two:
1) intersection of a convex sets is convex set;
2) closed balls are convex sets.
If we can guarantee these properties in considered space, we say structure
of convexity is formed in space.
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The condition of convexity for definition set or range set of mapping
very often is used for existence of fixed point of mapping in the theory of
fixed points. Several mathematicians have attempted transfer of structure
of convexity to space which is not vector space. For example, to metric
space - W. Takahashi [23], J.P. Penot [22], W.A. Kirk [13], [14], to topological
space - M.R. Taskovič [24] and to freely set (with help of closure operators) -
A. Liepiņš [17].

In this article we study strictly convex metric space and strictly convex
metric space with convex round balls and generalize concept of strictly con-
vex Banach space. Some interesting results in fixed point theory has been
proved in strictly convex Banach space, for example, M. Edelstein [6], [7],
F.E. Browder [4] (uniformly convex Banach space is also strictly convex),
L.P. Belluce and W.A. Kirk [1], Z. Opial [21], W.G. Dotson [5], K. Goebel
and W.A. Kirk [9], P. Kuhfitting [16]. We prove some fixed point theorems
for nonexpansive mapping and for commutative families of nonexpansive
or quasi-nonexpansive or asymptotically nonexpansive mappings in strictly
convex metric space with convex round balls.

2 Basic concepts

We know:
Definition 2.1. A Banach space X is said to be strictly convex if all

points of unit sphere are not inner points of straight lines in a unit ball.

V.I.Istratescu [10] has proved that in Banach space X the following con-
ditions are equivalent:
1. X is a strictly convex space;
2. ∀x, y ∈ B(0, 1), x 6= y : ‖ x + y ‖< 2
(with B(a, r) we denote closed ball with center a and radius r);
3. ∀x, y ∈ X : ‖ x + y ‖=‖ x ‖ + ‖ y ‖=⇒
=⇒ ((∃λ > 0 : x = λy)

∨
(x = 0)

∨
(y = 0)).

It is known that in convex closed subset of a strictly convex Banach space
set of fixed points for nonexpansive mapping is convex and closed. We note
that:

Definition 2.2. A mapping f : X → X, where X is a metric space,
is said to be nonexpansive if for every x, y ∈ X inequality d(f(x), f(y)) ≤
d(x, y) holds.

This property is also true for broader classes of mappings, for example,
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for quasi-nonexpansive and asymptotically nonexpansive mappings.

Definition 2.3 (V.G. Dotson [5]). A self-mapping f of a subset K of
a normed linear space is said to be quasi-nonexpansive provided f has at
least one fixed point in K, and if p ∈ K is any fixed point of f then

‖ f(x)− p ‖≤‖ x− p ‖
holds for all x ∈ K.

Definition 2.4 (K. Goebel and W.A. Kirk [9]). A self-mapping f of a
subset K of a normed linear space is said to be asymptotically nonexpansive
if for each paar x, y ∈ K:

‖ f i(x)− f i(y) ‖≤ ki ‖ x− y ‖,
where (ki)i∈N is a sequence of real numbers such that limi→∞ ki = 1 (it is
assumed that ki ≥ 1 and ki ≥ ki+1, i = 1, 2, . . .).

Let (X, d) be a metric space with distance d.

Definition 2.5. A set K ⊂ X is said to be convex if for each x, y ∈ K
and for each t ∈ [0; 1] there exists z ∈ K that satisfies:

d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y).

We note that by means of this Definition 2.5 closed balls may be non-
convex sets and intersection of a convex sets may be non-convex set (see,
for example, I. Galiņa [8]). Therefore we define strictly convex metric space
in following manner:

Definition 2.6. A metric space X is said to be strictly convex if for
each x, y ∈ X and for each t ∈ [0; 1] there exists unique z ∈ X that satisfies:

d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y).

This is not new original definition; we can find in bibliography, for ex-
ample, in W. Takahashi [23]. But we can not find comparison with strictly
convex Banach space. The author of this article has proved in 1992 (I. Galiņa
[8]): the following conditions are equivalent in Banach space X:
1. ∀x, y ∈ X : ‖ x + y ‖=‖ x ‖ + ‖ y ‖=⇒
=⇒ ((∃λ > 0 : x = λy)

∨
(x = 0)

∨
(y = 0));

2. ∀x, y ∈ X ∀t ∈ [0; 1] ∃!z ∈ X :
‖ x− z ‖= t ‖ x− y ‖, ‖ z − y ‖= (1− t) ‖ x− y ‖.
Since the first condition is equivalent with concept of strictly convex Ba-
nach space, we conclude that strictly convex Banach space indeed is strictly
convex metric space in particular case.
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It is simple to prove that intersection of convex sets (in means of Defi-
nition 2.5) is convex set in strictly convex metric space (I. Galiņa [8]). But
question of convexity of closed balls is still open.

3 Strictly convex metric space with convex round
balls

Since we can not guarantee that closed balls in strictly convex metric space
are convex sets, we require this condition in addition. We define:

Definition 3.1. A strictly convex metric space X is said to be strictly
convex space with convex round balls if
∀a, b, c ∈ X (a 6= b) ∀t ∈]0; 1[ ∃z ∈ X:

d(a, z) = td(a, b) and d(z, b) = (1− t)d(a, b),

(3.1) d(c, z) < max{d(c, a), d(c, b)}.
Lemma 3.1. Let X be a strictly convex metric space with convex round

balls. Then closed ball B(c, r) := {y ∈ X | d(c, y) ≤ r} for every r > 0 and
every c ∈ X is a convex set.

Proof. We fix r > 0 and c ∈ X. We choose freely two points a, b ∈
B(c, r), a 6= b, and fix t ∈]0; 1[. By definition of strictly convex metric
space, there exists unique z ∈ X such that d(a, z) = td(a, b) and d(z, b) =
(1− t)d(a, b). We must prove that z ∈ B(c, r) or d(c, z) ≤ r.

If t ∈]0; 1[ then d(a, z) = td(a, b), d(z, b) = (1−t)d(a, b) and by condition
of convex round balls follows that

d(c, z) < max{d(c, a), d(c, b)} ≤ r. 2

It can be proved that condition

∀a, b, c ∈ X(a 6= b) ∀t ∈]0; 1[ ∃z ∈ X :
d(a, z) = td(a, b) and d(z, b) = (1− t)d(a, b)
and d(c, z) ≤ max{d(c, a), d(c, b)}

is equivalent with condition of convexity of closed balls. We require more.
With help of strict inequality (3.1) we can prove Lemmas 3.2 and 3.3. Be-
sides this strict inequality shows that if a and b belongs to sphere of ball
B(c, r) then z does not belong to this sphere, i.e., sphere does not contain
straight lines therefore in Definition 3.1 we speak of convex round balls.
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We notice that well known metric space R with module metric and
R2 with Euclidean metric is both strictly convex metric space and strictly
convex metric space with convex round balls. But R2 with maximum metric
is not strictly convex metric space. Trivial example for strictly convex metric
space that is not strictly convex metric space with convex round balls is space
with one point x and d(x, x) = 0. We notice that every convex subset of
strictly convex Banach space is strictly convex metric space but no more
strictly convex Banach space.

Strictly convex metric spaces with convex round balls inherent some
good properties that we formulate as lemmas.

Lemma 3.2. Let X be a strictly convex metric space with convex round
balls and K be a convex and compact subset of X and y ∈ X. Then

∃!y0 ∈ K : d(y, y0) = inf{d(x, y) | x ∈ K}.

Proof. We define in set K functional f with identity f(x) := d(x, y),
∀x ∈ K. Since K is a compact set then by Weierstrass theorem: ∃y0 ∈ K:

f(y0) = inf{f(x) | x ∈ K} or d(y, y0) = inf{d(x, y) | x ∈ K}.
The uniqueness we prove from contrary. We suppose that there exists

another point y′0 ∈ K such that d(y, y′0) = inf{d(x, y) | x ∈ K}. The set K
is convex therefore for fixed t ∈]0; 1[ exists such y′′0 ∈ K that

d(y0, y
′′
0) = td(y0, y

′
0) and d(y′′0 , y′0) = (1− t)d(y0, y

′
0).

From condition of convex round balls follows that
d(y, y′′0) < max{d(y, y0), d(y, y′0)} = inf{d(x, y) | x ∈ K}.

We have obtained that point y′′0 to be closer than points y0 and y′0. The
contradiction completes the proof. 2

There is a certain course in fixed point theory formed by selfmappings of
sets with normal structure. This concept has been worked out by M. Brod-
skij and D. Milman [3] in 1948.

Definition 3.2. A convex set K in a metric space X is said to have
normal structure if for each bounded and convex subset H ⊂ K, that con-
tains more than one point, there is some point y ∈ H such that

sup{d(x, y) | x ∈ H} < diamH = sup{d(x, y) | x, y ∈ H}.
We can prove:

Lemma 3.3. Every convex and bounded set in strictly convex metric
space X with convex round balls has normal structure.
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Proof. Suppose K is convex and bounded set in space X that does not
have normal structure. Then exist bounded and convex subset H ⊂ K that
contains more than one point and

∀x ∈ H : sup{d(x, y) | y ∈ H} = diamH.

We choose point x1 ∈ H. Then ∃x2 ∈ H: d(x1, x2) = diamH. Since H is
convex set then for fixed t ∈]0; 1[ exists z ∈ H such that d(x1, z) = td(x1, x2)
and d(z, x2) = (1 − t)d(x1, x2). Since z ∈ H then ∃x3 ∈ H that d(x3, z) =
diamH. But then by condition of convex round balls:

d(x3, z) = diamH < max{d(x1, x3), d(x2, x3)} ≤ diamH.

The contradiction completes the proof. 2

4 Fixed points

In addition to classic case we can prove that set of fixed points for nonex-
pansive selfmappings in convex closed subset of strictly convex metric space
is convex and closed (I. Galiņa [8]).

If we replace in Definitions 2.3 and 2.4 the vector space with metric space
and norm with metric then two followings lemmas are true.

Lemma 4.1. Let K be a convex and closed subset of strictly convex
metric space X. If mapping f : K → K is a quasi-nonexpansive then the
set of all fixed points of mapping f F ixf is closed and convex.

Proof. Since f is quasi-nonexpansive then Fixf 6= ∅ and f is continuous
mapping in all fixed points. We assume, that Fixf is not closed set. Then
exists x that belongs to boundary of Fixf and that does not belong to
Fixf . Since K is closed set then x ∈ K. Since x /∈ Fixf then f(x) 6= x. We
define r := 1

3d(f(x), x) > 0. Then exists y ∈ Fixf that d(x, y) ≤ r. Since f
is quasi-nonexpansive then d(f(x), y) ≤ d(x, y) ≤ r, and we have:

3r = d(f(x), x) ≤ d(f(x), y) + d(y, x) ≤ 2r.

This contradiction shows that assumption of Fixf un-closedness is false.
Now we prove that Fixf is convex set. We choose freely two points

x and y (x 6= y) in set Fixf . Let t ∈]0; 1[. We find the corresponding
z ∈ K: d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y), which is unique by
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strictly convexity of X. We want to prove, that point z belongs to set Fixf .
Since f is quasi-nonexpansive then

d(f(z), x) ≤ d(z, x) and d(f(z), y) ≤ d(z, y).

Therefore

d(x, y) ≤ d(x, f(z)) + d(f(z), y) ≤ d(z, x) + d(z, y) =
= td(x, y) + (1− t)d(x, y) = d(x, y).

It follows that

d(x, f(z) = d(z, x) = td(x, y),
d(f(z), y) = d(z, y) = (1− t)d(x, y).

By strictly convexity of X implies that z = f(z) and z ∈ Fixf , i.e., Fixf
is convex set. 2

Lemma 4.2. Let K be convex and closed subset of strictly convex metric
space X. If mapping f : K → K is an asymptotically nonexpansive then the
set of all fixed points of mapping f F ixf is closed and convex.

Proof. From continuity of mapping f follows closedness of set Fixf .
We prove that Fixf is convex set.
We choose freely two points x and y (x 6= y) in Fixf , then

f i(x), f i(y) ∈ Fixf , i = 1, 2, . . . .
Let t ∈]0; 1[. We find the corresponding

(4.1) z ∈ K : d(x, z) = td(x, y), d(z, y) = (1− t)d(x, y).

Sine X is strictly convex then z is unique. We will have to prove that
z ∈ Fixf or z = f(z).

From definition of asymptotically nonexpansive mapping follows that:

(4.2) d(f i(z), x) = d(f i(z), f i(x)) ≤ kid(z, x) = tkid(x, y), i = 1, 2, . . .

(4.3) d(f i(z), y) = d(f i(z), f i(y)) ≤ kid(z, y) = (1−t)kid(x, y), i = 1, 2, . . .

Inequality of triangle and (4.2) and (4.3) implies:

d(x, y) ≤ d(x, f i(z)) + d(f i(z), y) ≤
≤ tkid(x, y) + (1− t)kid(x, y) = d(x, y), i = 1, 2, . . . .
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Let i tend to infinity. Then limi→∞ ki = 1 and

d(x, lim
i→∞

f i(z)) + d( lim
i→∞

f i(z), y) = td(x, y) + (1− t)d(x, y).

From (4.2) and (4.3) follows that

d(x, limi→∞ f i(z)) = td(x, y),
d(limi→∞ f i(z), y) = (1− t)d(x, y).

z is a unique point with property (4.1) therefore limi→∞ f i(z) = z. It follows
that

z = lim
i→∞

f i(z) = lim
i→∞

f i+1(z) = f( lim
i→∞

f i(z)) = f(z),

i.e., z ∈ Fixf and Fixf is convex set. 2

Inspired from fixed point theorems where condition of normal structure
is used (for example, R. de Marr [19], W. A. Kirk [12], W. Takahashi [23]
or M. R. Taskovič [24]) we can prove:

Theorem 4.1. Let X be strictly convex metric space with convex round
balls. Let K ⊂ X be convex and compact set. If f : K → K is nonexpansive
mapping then f has a fixed point in K.

Proof. From Zorn’s lemma, minimal element K0 exists in the collection
of all nonempty convex and closed subsets of K, each of them is mapped
into itself by f . We show that K0 consists of a single point. We assume that
diamK0 > 0.

Since K0 is convex set then by Lemma 3.3 K0 has normal structure, i.e.,

∃x ∈ K0 : sup{d(x, y) | y ∈ K0} = r < diamK0.

We denote convex closed hull of set f(K0) with cof(K0) = K1. Since
f(K0) ⊂ K0 then

K1 = cof(K0) ⊂ coK0 = K0 and
f(K1) ⊂ f(K0) ⊂ cof(K0) = K1.

The minimality of K0 implies K1 = K0.
We define set

C := (∩y∈K0B(y, r)) ∩K0.

That is nonempty since x ∈ C, that is convex (by Lemma 3.1 balls are
convex sets) and closed set as intersection of convex and closed sets.
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We define set
C1 :=

(
∩y∈f(K0)B(y, r)

)
∩K0.

Since f(K0) ⊂ K0 then C1 ⊃ C. If z ∈ C1 then

f(K0) ⊂ B(z, r) and K0 = K1 = cof(K0) ⊂ B(z, r)

(because B(z, r) is closed and convex set) therefore C ⊃ C1. It follows that
C = C1.

We choose z ∈ C and y ∈ f(K0). Then exists x ∈ K0 such that y = f(x).
Thereby:

d(f(z), y) = d(f(z), f(x)) ≤ d(z, x) ≤ r,

i.e., f(z) ∈ C1. Since C = C1 then f(z) ∈ C or f(C) ⊂ C. The minimality
of K0 implies C = K0. But

diamC ≤ r < diamK0.

From obtained contradiction we conclude that diamK0 = 0 and K0 = {x∗}
and therefore f(x∗) = x∗. 2

We generalize Theorem 4.1 for commutative family of nonexpansive map-
pings.

Definition 4.1. A family of mappings F is commutative if for all x ∈
K, where K is an arbitrary set, condition f(g(x)) = g(f(x)) holds for all
f, g ∈ F .

Our result generalize fixed point theorems for commutative family of non-
expansive mappings of R. de Marr [19], F. E. Browder [4] and T. C. Lim [18].

Theorem 4.2. Let X be a strictly convex metric space with convex
round balls. Let K ⊂ X is convex and compact set. If F = {f | f : K → K}
is commutative family of nonexpansive mappings then exists a common fixed
point for family F , i.e.,

∃x∗ ∈ K ∀f ∈ F : f(x∗) = x∗.

Proof. From Theorem 4.1 it is known that Fixf 6= ∅, ∀f ∈ F . Since
X is strictly convex metric space, Fixf is convex and closed sets for every
f ∈ F (by I. Galiņa [8]).
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Let us inductively prove that ∩n
i=1Fixfi 6= ∅ for every n ∈ N. For n = 1

the statement is true from the Theorem 4.1. Assuming that ∩k
i=1Fixfi 6= ∅,

let us prove that ∩k+1
i=1 Fixfi 6= ∅. Since by assumption

fk+1(x) = fk+1(fi(x)) = fi(fk+1(x)), i = 1, 2, . . . , k,

it follows that
fk+1(x) ∈ ∩k

i=1Fixfi and hence
fk+1 : ∩k

i=1Fixfi → ∩k
i=1Fixfi.

Let us prove that the mapping fk+1 has a fixed point in the set ∩k
i=1Fixfi.

The sets Fixfi, i = 1, 2, . . . , k, are nonempty, closed and convex, therefore
∩k

i=1Fixfi is closed and convex as intersection of closed and convex sets;
that is compact set as closed subset of compact set K. By Theorem 4.1 for
nonexpansive mapping there exists

fk+1 : ∩k
i=1Fixfi → ∩k

i=1Fixfi

fixed point in set ∩k
i=1Fixfi, therefore

∩k+1
i=1 Fixfi 6= ∅.

Since set K is compact then ∩f∈F Fixf is nonempty set also for infinite
family of mappings. 2

Similar theorems we can to prove for commutative family of quasi-
nonexpansive and asymptotically nonexpansive mappings.

Theorem 4.3. Let X be strictly convex metric space with convex round
balls. Let K ⊂ X be convex and compact set. If F = {f | f : K → K} is
commutative family of quasi-nonexpansive mappings then exists a common
fixed point for family F .

Proof. Idea of proof is similar as in Theorem 4.2. The differences are
that for n = 1 the statement is true by definition of quasi-nonexpansive
mapping and the proof that mapping fk+1 has a fixed point in the set
∩k

i=1Fixfi.
Let

fk+1 : ∩k
i=1Fixfi → ∩k

i=1Fixfi.

Let ∩k
i=1Fixfi be convex and compact set (this follows from Lemma 4.1).

We fix z ∈ Fixfk+1 6= ∅. By Lemma 3.2 there exists unique element

z0 ∈ ∩k
i=1Fixfi such that d(z, z0) = inf{d(z, y) | y ∈ ∩k

i=1Fixfi}.

10



Then from definition of quasi-nonexpansive mapping we get:

d(z, z0) = inf{d(z, y) | y ∈ ∩k
i=1Fixfi} ≤

≤ d(z, fk+1(z0)) = d(fk+1(z), fk+1(z0)) ≤ d(z, z0).

From uniqueness of z0 follows that fk+1(z0) = z0 therefore

z0 ∈ ∩k+1
i=1 Fixfi 6= ∅. 2

Theorem 4.4. Let X be strictly convex metric space with convex round
balls. Let K ⊂ X is convex and compact set. If F = {f | f : K → K} is
commutative family of asymptotically nonexpansive mappings and

∀f ∈ F : Fixf 6= ∅
then exists a common fixed point for family F .

Proof. Proof is similar to previous theorems. The differences are fol-
lowing. The set ∩k

i=1Fixfi is convex and closed by Lemma 4.2, since K is
convex and compact set then ∩k

i=1Fixfi is convex and compact set. We
prove that mapping

fk+1 : ∩k
i=1Fixfi → ∩k

i=1Fixfi

has a fixed point in set ∩k
i=1Fixfi. We fix z ∈ Fixfk+1 6= ∅. By Lemma 3.2

there exists unique element z0 ∈ ∩k
i=1Fixfi such that

d(z, z0) = inf{d(z, y) | y ∈ ∩k
i=1Fixfi}.

Then:

d(z, z0) = inf{d(z, y) | y ∈ ∩k
i=1Fixfi} ≤

≤ d(z, f i
k+1(z0) = d(f i

k+1(z), f i
k+1(z0) ≤ kid(z, z0), i = 1, 2, . . . .

Let i →∞. Then

lim
i→∞

ki = 1 and d(z, z0) = d(z, lim
i→∞

f i
k+1(z0)).

From uniqueness of z0 follows that

z0 = lim
i→∞

f i
k+1(z0).

Since

z0 = lim
i→∞

f i
k+1(z0) = lim

i→∞
f i+1

k+1(z0) = f( lim
i→∞

f i
k+1(z0)) = f(z0)

then
z0 ∈ ∩k+1

i=1 Fixfi 6= ∅. 2
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I, Kōdai Math. Semin. Rep., 22(1970), 142-149.
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