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Abstract—There exist various techniques to extend 

reinforcement learning algorithms, e.g., eligibility traces and 
planning. In this paper, an approach is proposed, which 
combines several extension techniques, such as using eligibility-
like traces, using approximators as value functions and 
exploiting the model of the environment. The obtained method, 
undelayed n-step TD prediction (TD-P), has produced 
competitive results when put in conditions of not fully observable 
environment. 

I. EXTENSION TECHNIQUES OF REINFORCEMENT LEARNING 

A. Eligibility Traces 

Eligibility traces are one of the basic mechanisms of 
reinforcement learning to handle delayed reward. The idea 
behind all eligibility traces is very simple. Each time a state is 
visited it initiates a short-term memory process, a trace, which 
then decays gradually over time. This trace marks the state as 
eligible for learning.[2] 

 
Algorithm sarsa_lambda (n) 
 Q – state-action values 
 π(Q) – policy derived from Q 
 γ – discount rate 
 λ – decay rate 
 α – learning rate 
 N – maximum eligibility trace length 
Begin 
 Initialize Q 
 Do many times 
  Trace ← Empty 
  s ← random nonterminal state 
  a ← choose action from state s according policy π(Q) 
  While s is not final state 
   Append <s, a> to Trace 
   r, s' ← Take action a, observe reward and next state 
   a' ← choose action from state s' according policy π(Q) 
   δ ← r + γQ(s',a') – γQ(s,a) 
   λ* ← 1 
   For N steps <s*, a*> in Trace from the end backwards 
    Q(s*,a*) ← Q(s*,a*) + αδλ* 
    λ* ← γλλ* 
   s ← s' 
   a ← a' 

Fig. 1.  Sarsa(λ) (with limited trace length) 

 
There are two ways to view eligibility traces. The more 

theoretical view of eligibility traces is called the forward view, 
and the more mechanistic view is called the backward view. 
The forward view is most useful for understanding what is 

computed by methods using eligibility traces, whereas the 
backward view is more appropriate for developing intuition 
about the algorithms themselves.[3]  

Fig. 1 depicts traditional Sarsa algorithm armed with 
eligibility traces. For simplicity and consistency, it is assumed 
that the environment is deterministic and the algorithms use 
state-action values (not just state values). 

To view the same process according the forward view, we 
should look forward from the current state (to the subsequent 
states) to compute its value; and it can be carried out through 
making a delay in modification of state-action values. 

B. Reinforcement Learning and Neural Networks 

Standard reinforcement learning algorithms assume that 
state-action values are stored in a table – one value per state-
action pair. 

 
Algorithm sarsa_neural 
 Ψ – supervised neural network to store state-action values 
 π(Ψ) – policy derived from Ψ 
 γ – discount rate 
 «·» – set of features present in (·)  
Begin 
 Initialize Ψ 
 Do many times 
  «s» ← random nonterminal state 
  a ← choose action from «s» according policy π(Ψ) 
  While «s» does not represent terminal state 
   r, «s'» ← Take action a, observe reward and next state 
   a' ← choose action from «s'» according policy π(Ψ) 
   v ← r + γΨ(«s',a'») 
   Train Ψ with «s, a», v 
   «s» ← «s'» 
   a ← a' 

Fig. 2.  Classic Sarsa algorithm complemented by a neural network to store 
state-action values 

 
Unfortunately this is not always possible, and big total 

amount of states and actions is only one of possible reasons. 
Moreover, there can be too complicated to accurately fill such 
a table of values, or even to identify all the possible states and 
actions, because state-action space may include continuous 
variables or complex sensations. In this case the issue is that 
of generalization; and a supervised neural network (e.g., 
multi-layer perceptron) is a typical choice to realize that. 

The simplest way of using a neural network Ψ is to apply it 
instead of value table Q (see Fig. 2 for the classic Sarsa 
algorithm with a neural network as a value function). To 



better describe the algorithm in such conditions, it is worth to 
add a notion of set of features, e.g., «s» denotes a set of 
features of some state s. In this paper, it is assumed that 
possible actions are countable, and «a» means just the code of 
action a obtained in order to be passed to a neural network as 
an input. 

Eligibility traces are also used combined with function 
approximators (see [1]). Accordingly also neural networks can 
be incorporated into a reinforcement learning algorithm with 
eligibility traces (Fig. 3). 

 
Algorithm sarsa_neural_lambda (N) 
 Ψ – supervised neural network to store action values 
 π(Ψ) – policy derived from Ψ 
 γ – discount rate 
 λ – decay rate 
 η – learning rate for Ψ 
 N – maximum eligibility trace length 
 «·» – set of features present in (·)  
Begin 
 Initialize Ψ 
 Do many times 
  Trace ← Empty 
  «s» ← random nonterminal state 
  a ← choose action from «s» according policy π(Ψ) 
  While «s» does not represent terminal state 
   Append <«s», a> to Trace 
   r, «s'» ← Take action a from «s», observe result 
   a' ← choose action from «s'» according policy π(Ψ) 
   v ← r + γΨ(«s',a'») 
   η* ← η 
   For N steps <s*, a*> in Trace from the end backwards 
    Train Ψ with <«s, a», v> using learning rate η* 
    η* ← η*γλ 
   «s» ← «s'» 
   a ← a' 

Fig. 3.  Sarsa(λ) (with limited trace length) adjusted for using neural network 
as a value function 

 

C. Planning in Reinforcement Learning 

By planning we mean looking ahead in a model of an 
environment in order to enhance the reinforcement learning 
process. The model is used to simulate the environment and 
get some simulated experience. 

 

 
Fig. 4.  Relationships among learning, planning, and acting[3][1] 

 
Extension of reinforcement learning with planning is 

carried out by integrating it with learning and acting processes 
(See Fig. 4). 

There exist various methods to integrate planning into 
reinforcement learning. A well known one is that of Dyna[4]. 
In Dyna, to extend learning from real experience, some 
learning from simulated experience is also added. 

The idea of Dyna algorithm is the following: in each step of 
the episode, additional training is performed for randomly 
chosen state-action pairs, according the value obtained by the 
help of the environment model. 

Fig. 5 shows the Dyna algorithm [4] adapted for Sarsa 
learning and neural network as a value function. 

 
Algorithm dyna_sarsa_neural 
 Ψ – supervised neural network to store state-action values 
 Μ – supervised neural network to model environment 
 π(Ψ) – policy derived from Ψ 
 γ – discount rate 
 «·» – set of features present in (·)  
Begin 
 Initialize Ψ, Μ 
 Do many times 
  «s» ← current (nonterminal) state 
  a ← choose action from «s» according policy π(Ψ) 
  r, «s'» ← Take action a, observe reward and next state 
  a' ← choose action from «s'» according policy π(Ψ) 
  v ← r + γΨ(«s',a'») 
  Train Ψ with «s, a», v 
  Train Μ with <«s, a», <r, «s'»>> 
  Repeat N times 
   «s*» ← random previously observed state 
   a* ← random action previously taken in s 
   r*, «s** » ← Μ(«s*,a*»)  % Take action “in model” 
   a**  ← choose action from «s** » according policy π(Ψ) 
   v ← r* + γΨ(«s** ,a** ») 
   Train Ψ with «s*, a*», v 

Fig. 5.  Dyna-Sarsa algorithm 

 

II. UNDELAYED N-STEP TD PREDICTION 

This chapter is to describe the “Undelayed n-step TD 
prediction” (TD-P), the author’s proposed approach to 
organize forward-looking mechanism through exploring the 
environment model, realized by a neural network. In some 
technical details, this approach links both with eligibility trace 
mechanism (for using a trace to visit other states) and the 
Dyna algorithm (for using a model to predict the behaviour of 
the environment). 

A. Inspiration 

The main idea of the proposed approach is just ‘looking 
forward’ for additional information (instead of looking back, 
used in most algorithms because of being less complicated in 
terms of computation) to enhance the algorithm. 

Theoretically, looking forward can be realized via several 
methods, e.g., n-step TD prediction, where state-action values 
are updated in the direction of n-step target R (See Eq. (1), 
adapted from [3]): 
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Here, looking forward is formal, actually realized through 
delay mechanism (i.e., it is just a ‘forward view’, not real 
looking forward). A “true” looking forward is possible 
through involving prediction of future states. 

B. The Algorithm 

N-step prediction can be realized directly through looking 
forward in the model of environment (instead of the 
environment itself, like in the Dyna algorithm (Fig. 5)) thus 
modelling future steps of the episode (So Eq. (1) turns into Eq. 
(2)): 
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where r i – actual reward; r i
(Μ) – modelled future reward; 

si
(Μ) – modelled future state. 
 

Procedure sarsa_P (N) 
 Ψ – supervised neural network to store action values 
 Μ – supervised neural network to model environment 
 π(Ψ) – policy derived from Ψ 
 γ – discount rate 
 N – maximum forward trace length 
 n(·,·) – forward trace length function 
 «·» – set of features present in (·)  
Begin 
 Initialize Ψ, Μ 
 T ← 0 
 Do many times 
  T ← T + 1 
  «s» ← random nonterminal state 
  a ← choose action from «s» according policy π(Ψ) 
  While «s» does not represent terminal state 
   r, «s'» ← Take action a from «s», observe result 
   v ← r 
   γ* ← γ 
   «s*» ← «s'» 
   n* ← n(T) 
   While «s*» does not represent terminal state and n* ≥ 0 
    a* ← choose action from «s*» according policy π(Ψ) 
    r*, «s** » ← Μ(«s*,a*»)  % Take action “in model” 
    n* ← n* – 1 
    If «s** » represents terminal state or τ* ≤ 0 
     v ← v + γ*r* 
    Else 
     v ← v + Ψ(«s*,a*») 
    γ* ← γγ* 
    «s*» ← «s** » 
   Train Ψ with <«s, a», v> 
   Train Μ with <«s, a», <r, «s'»>> 
   a' ← choose action from «s'» according policy π(Ψ) 
   «s» ← «s'» 
   a ← a' 

Fig. 6.  Sarsa-P: Sarsa with TD-P 

 

Unlike the Dyna algorithm (Fig. 5) and also eligibility-
trace-based algorithms (Fig. 3), in this approach, additional 
activities within a step of an episode concern predicted future 
states, instead of previously observed ones. 

There’s one more complication within the context of this 
approach: in the beginning, while the available information on 
the environment is insufficient, it isn’t reasonable to look far 
forward. Therefore, to avoid “unacceptable looking forward” 
in the beginning of the trial, the maximum count of steps (to 
look forward) N should be replaced by some function n(⋅,⋅) 
(See Eq. (3)), designed in a way that for the first episodes no 
looking forward is performed. 
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where T – number of the episode, N – maximum forward 
trace length. 

The pseudocode of Fig. 6 depicts Sarsa-P algorithm: the 
approach of TD-P applied to the Sarsa algorithm. 

C. Benefits of the Approach 

Of course, there’s no idea to apply neural-networks-based 
algorithms for “simple” problems, e.g., for those with fully 
observable environment and easy identifiable states. Any 
practical benefits for such algorithms can be expected only in 
“hard conditions”, so here we assume that the problems are 
hard enough to be worth using neural networks to model the 
value function. 

Advantages of approaches with eligibility traces over 
traditional TD algorithms are well known – such algorithms 
are faster. 

In terms of ideology, the main advantage of the proposed 
approach of TD-P over eligibility traces is diminished amount 
of training operations needed for the neural network, realizing 
the state-action value function: 

• In algorithms with eligibility traces, the value is 
computed for the current state, and then propagated 
back over the trace by performing training many times – 
for each state-action in the trace; 

• In this TD-P approach, travelling over the trace is done 
just to compute the value, and then training is 
performed only once – for the current state. 

Although this advantage tends to be a bit heuristic (because 
it can be sensed only in special conditions); it can be 
considerable, if the training process is heavy to perform. 

III.  EXPERIMENTAL WORK 

A. The Problems to Solve 

The experimentation was done on relative simple problems 
just handled as if the environment was not fully observable. 
The goal of the experimentation was to show such an 
approach working, as well as be able to outperform other 
methods in certain “hard” conditions. 



The idea of the experiments was very simple: the 
algorithms were tested on two deterministic grid-world 
problems: 5×6 and 7×8 (See Figs 7 and 8) and the outputs 
were compared against the “suboptimal policies” (The set of 
suboptimal policies was obtained as statistics through 
traditional TD algorithms as a set of possible actions for each 
state encountered at least in 5% of cases). Each trial was run 
until a suboptimal policy was obtained (good result) or 
100,000 episodes were reached (bad result). The discount rate 
γ=0.9 was used. The environments of the problems were set to 
behave as if they were not fully observable. 

White cells denote normal (nonterminal) states; black cells 
stand for the wall, while shaded cells represent terminal states. 
A number in a cell denotes the reward of a move to this cell. 

There are 4 actions: up, down, left, right, which cause the 
agent to move one cell in the corresponding direction. The 
state remains unchanged if the agent tries to go off the grid or 
against the wall. 
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Fig. 7.  Problem 5×6 and its suboptimal policies 
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Fig. 8.  Problem 7×8 and its suboptimal policies 

 

B. Configuration of the Testing Environment 

The problems were tried to solve via three following 
algorithms, all of which used a neural network as a value 
function: 

• Sarsa (Fig. 2); 
• Sarsa(λ) (Fig. 3) with two different maximum trace 

lengths – 3 and 5; 
• Sarsa-P (Fig. 6) with two different maximum trace 

lengths – 3 and 5. 
For neural networks, the following coding was used: 
• State – two numbers from the interval [0, 1] 

(corresponding to the horizontal and vertical position of 
the state in the grid); 

• Action – one number from the interval [0, 1]. 
Neural network (multi-layer perceptron) architectures used 

(one hidden layer): 
• Value function: 3-40-1 
• Transition rewards (Sarsa-P only): 3-40-1 
• Transition states (Sarsa-P only): 3-40-2 

Other parameters of the experiments: 
• Maximum count of episodes in a trial – 100,000. 
• Learning rates for neural networks – 0.1. 
• Decay rate λ=0.9 (Sarsa(λ) only) 
• Policies were computed from the corresponding value 

functions in ε-greedy manner with ε=30%. 
The forward trace length function n(⋅,⋅) was realised by the 

following function (Eq. (4)): 
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where T – number of the episode, N – maximum forward 
trace length, g – change rate (for the current experimentation g 
was set to 0.0001). 
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Fig. 7.  Illustration of the forward trace length function n(⋅,⋅) (Eq. (4)) used in 
Sarsa-P algorithm (Fig. 6) to avoid looking forward too far in the first 
episodes 

 

C. Experimental Results 

The total of 164 experimental trials was performed to form 
the final results (Fig. 8). Two of there problems were solved 
via five different variants of the algorithms (2×5=10 cases). 
Amount of trials which converged to a suboptimal policy (i.e., 
a satisfactory result) was obtained. 

Ca. 58% of trials of the “easiest” problem 5×6 converged 
successfully. Best results were obtained by Sarsa(λ). 



Only about 18% of trials converged in the case of the 
“harder” problem 7×8, and here the best result was reached by 
the Sarsa-P algorithm. 

Summary of the results for different kinds of the Sarsa 
algorithm featured by neural networks as value function: 

• Best results for the problem 5×6 were reached by 
Sarsa(λ); 

• Sarsa(λ) was generally better than traditional Sarsa. 
This would be just a little complement to credibility of 
experimentation with such configuration; 

• Best results for the problem 7×8 were reached by  
Sarsa-P; 

• Traditional Sarsa was absolute unable to solve the 
problem 7×8; 

• Sarsa-P was surprisingly weak on solving the “easy” 
problem 5×6. 
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Fig. 8.  Experimental results – percentage of trials converged, according the 

problems solved and algorithms applied 

 
The most “disappointing” ones were the results of Sarsa-P 

on solving the “easiest” 5×6 problem (19% and 38% 

depending on the maximum length of the trace). It would 
probably signal for instability of the algorithm or its current 
realization. 

IV.  CONCLUSION 

The proposed approach combines several methods or 
techniques to extend reinforcement learning: 

• Using traces (like eligibility traces) to visit other states; 
• Using approximators for value functions; 
• Exploiting the model of the environment to obtain 

additional information. 
The approach has been designed for use in specific “hard” 

conditions of problem solving – not fully observable 
environment with potentially unidentifiable states. 

The main goal of the experimentation was to show such an 
approach working, and this has been reached – the 
corresponding algorithm has shown competitive results 
against other methods. 

Although Sarsa-P was weak in solving one of the problems: 
5×6; it clearly outperformed other algorithms on solving the 
“more complicated” problem 7×8, and this keeps the proposed 
approach of TD-P promising for further development. 
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