Realizing Undelayed-Step TD Prediction with
Neural Networks

Janis Zuters

Faculty of Computing, University of Latvia
Raina bulvaris 19-434, LV-1586 Riga, Latvia
janis.zuters@u.lv

Abstract—There exist various techniques to extend
reinforcement learning algorithms, e.g., eligibiliy traces and
planning. In this paper, an approach is proposed, tich
combines several extension techniques, such as gsigligibility-
like traces, using approximators as value functionsand
exploiting the model of the environment. The obtaing method,
undelayed n-step TD prediction (TD-P), has produced
competitive results when put in conditions of notdlly observable
environment.

I. EXTENSION TECHNIQUES OFREINFORCEMENTLEARNING

A. Eligibility Traces

Eligibility traces are one of the basic mechanisofs
reinforcement learning to handle delayed rewarde Tdea
behind all eligibility traces is very simple. Eatitme a state is
visited it initiates a short-term memory processaae, which
then decays gradually over time. This trace madnksstate as
eligible for learning.[2]

Algorithm sarsa_lambda (n)
Q — state-action values
n(Q) — policy derived fronQQ
y — discount rate
A — decay rate
o — learning rate
N — maximum eligibility trace length
Begin
Initialize Q
Do many times
Trace<« Empty
s« random nonterminal state
a « choose action from staseaccording policyt(Q)
While sis not final state
Append s, a>to Trace
r, s « Take actiora, observe reward and next state
a' « choose action from state s' according pati¢y)
5*6 r+ YQ(Slra') _YQ(Sra)
A1
ForN steps €, a"> in Tracefrom the end backwards
Q(s,a) « Q(s,a) +udr’
Ay
S« S
a<a

Fig. 1. Sarsa| (with limited trace length)

There are two ways to view eligibility traces. Thwore
theoretical view of eligibility traces is calledetfiorward view,
and the more mechanistic view is called the backvaew.
The forward view is most useful for understandinbatvis

computed by methods using eligibility traces, wherghe
backward view is more appropriate for developintuition
about the algorithms themselves.[3]

Fig. 1 depicts traditional Sarsa algorithm armedhwi
eligibility traces. For simplicity and consistendtyis assumed
that the environment is deterministic and the athors use
state-action values (not just state values).

To view the same process according the forward viegv
should look forward from the current state (to subsequent
states) to compute its value; and it can be cawigdhrough
making a delay in modification of state-action \esu

B. Reinforcement Learning and Neural Networks

Standard reinforcement learning algorithms assuha t
state-action values are stored in a table — ongevaér state-
action pair.

Algorithm sarsa_neural
¥ — supervised neural network to store state-actidumes
n(¥) — policy derived fromy
y — discount rate
«» — set of features present i (
Begin
Initialize ¥
Do many times
«» « random nonterminal state
a « choose action fromsz according policyt(¥)
While «» does not represent terminal state
r, «S» «— Take actiora, observe reward and next state
a' « choose action from «s'» according poligy¥)
Ve +yP(«s,a»)
Train¥ with s, a», v
(S — «S»

a<«a

Fig. 2. Classic Sarsa algorithm complemented Igw@ral network to store
state-action values

Unfortunately this is not always possible, and kbigal
amount of states and actions is only one of passihsons.
Moreover, there can be too complicated to accwydilesuch
a table of values, or even to identify all the jlolesstates and
actions, because state-action space may includénaons
variables or complex sensations. In this case gbeei is that
of generalization; and a supervised neural netw@ly.,
multi-layer perceptron) is a typical choice to iealthat.

The simplest way of using a neural netwitks to apply it
instead of value table Q (see Fig. 2 for the ctaskarsa
algorithm with a neural network as a value functiomo

better describe the algorithm in such conditiong worth to There exist various methods to integrate plannintp i
add a notion of set of features, e.gsp «denotes a set ofreinforcement learning. A well known one is thatyfna[4].
features of some state In this paper, it is assumed thatn Dyna, to extend learning from real experiencems
possible actions are countable, ame eans just the code oflearning from simulated experience is also added.
actiona obtained in order to be passed to a neural netasrk The idea of Dyna algorithm is the following: in bastep of
an input. the episode, additional training is performed fandomly
Eligibility traces are also used combined with fime chosen state-action pairs, according the valueirdataby the
approximators (see [1]). Accordingly also neurdivteks can help of the environment model.

be incorporated into a reinforcement learning athor with Fig. 5 shows the Dyna algorithm [4] adapted fors&ar
eligibility traces (Fig. 3). learning and neural network as a value function.
Algorithm sarsa_neural_lambda (N) Algorithm dyna_sarsa neural
Y — supervised neural network to store action values Y — supervised neural network to store state-actadumes
n(¥) — policy derived from¥ M — supervised neural network to model environment
y — discount rate n(¥) — policy derived fromV
A — decay rate y — discount rate
n — learning rate fo¥ «» — set of features present i (
N — maximum eligibility trace length Begin
«» — set of features present ij (Initialize ¥, M
Begin Do many times
Initialize ¥ «» <« current (nonterminal) state
Do many times a « choose action fromsz according policyt(¥)
Trace<« Empty r, «©» « Take actiora, observe reward and next state
« « random nonterminal state a' « choose action from «s'» according poligy’)
a « choose action fromse according policyt(¥) Vet +yP(«s,a»)
While «» does not represent terminal state Train¥ with «s, a», v
Append <&», a> to Trace TrainM with <, a», <r, «s»>>
r, «s» «— Take actiora from «s», observe result Repeal times
a' « choose action fromse according policyt (V) «8 » < random previously observed state
V< 1 +y¥P(«s,a») a’ « random action previously takensn
1 <N r, " » « M(«s ,a'») % Take action “in model”
ForN steps €, a> in Tracefrom the end backwards a" « choose action from &s according policyt(¥)
'I:rain‘l: with <, a», v> using learning ratg Ve I +yP(«s” @ »)
n < MyA Train¥ with «s, a'», v
(S < «S» . .
aca Fig. 5. Dyna-Sarsa algorithm

Fig. 3. Sarsaj (with limited trace length) adjusted for usingure network
as a value function
Il. UNDELAYED N-STEPTD PREDICTION
This chapter is to describe the “Undelayadtep TD
C. Planning in Reinforcement Learning prediction” (TD-P), the author's proposed approatth
By planning we mean looking ahead in a model of &fganize forward-looking mechanism through explgrihe

environment in order to enhance the reinforcemeatning €nvironment model, realized by a neural networkseme
process. The model is used to simulate the envieomrand technical details, this approach links both witigiellity trace

get some simulated experience. mechanism (for using a trace to visit other statas) the
Dyna algorithm (for using a model to predict thédn@our of
value/policy the environment).
acting A. Inspiration
plenmina ot The main idea of the proposed approach is justkitap
forward’ for additional information (instead of lkiag back,
model experience used in most algorithms because of being less doatetl in
terms of computation) to enhance the algorithm.
e Theoretically, looking forward can be realized sieveral
learning methods, e.gn-step TD prediction, where state-action values
Fig. 4. Relationships among learning, planning} acting[3][1] are updated in the direction ofstep targeR (See Eq. (1),

adapted from [3]):

Extension of reinforcement learning with planning i
carried out by integrating it with learning andiagtprocesses
(See Fig. 4).

R[(N) (S, a) =l + ﬂt+2 + 72rt+3 + (1)

+...+ }/NierN + }/nQ(SJrN ’ at+N)

Here, looking forward is formal, actually realizéttough
delay mechanism (i.e., it is just a ‘forward viewipt real
looking forward). A “true” looking forward is podse
through involving prediction of future states.

B. The Algorithm
N-step prediction can be realized directly througbking

Unlike the Dyna algorithm (Fig. 5) and also elidjtiyi
trace-based algorithms (Fig. 3), in this approaadditional
activities within a step of an episode concern joted future
states, instead of previously observed ones.

There’s one more complication within the contexttloi
approach: in the beginning, while the availabl@infation on
the environment is insufficient, it isn't reasorald look far
forward. Therefore, to avoid “unacceptable lookingward”
in the beginning of the trial, the maximum countstéps (to
look forward) N should be replaced by some functio@,-)
(See Eg. (3)), designed in a way that for the #ygisodes no
looking forward is performed.

forward in the model of environment (instead of the

environment itself, like in the Dyna algorithm (Fi§)) thus
modelling future steps of the episode (So Eq.{finNg into Eq.
(2):

Rt(N) (s,@)=r,+ 7&342 + 72"&43 + (2)

+ot N N QSN A)

t+N

wherer; — actual rewardr;*? — modelled future reward:;
s™ — modelled future state.

Proceduresarsa_P (N)
Y — supervised neural network to store action values
M — supervised neural network to model environment
() — policy derived from¥
y — discount rate
N — maximum forward trace length
n(:,) — forward trace length function
«» — set of features present ij (
Begin
Initialize ¥, M
T« O
Do many times
T«T+1
«» « random nonterminal state
a « choose action fromsz according policyt(¥)
While «» does not represent terminal state
r, «8» «— Take actiora from «», observe result
Ve
v ey
S » ¢ «S»
n <« n(T)
While « » does not represent terminal state are 0
a’ « choose action fromsw according policyt(‘¥)
I, " »« M(«s ,a») % Take action “in model”
nNen-1
If «$"» represents terminal statetok 0
Ve v+yT
Else
V4 V+P(«s,a»)
Y* *(_ Y’Yk R
EM»— &S »
Train¥ with <«s, a», v>
TrainM with <«s, a», <r, «S»>>
a' < choose action fromse according policyt(‘¥)
S» < «S»
a<a

Fig. 6. Sarsa-P: Sarsa with TD-P

NT M
Rént() (sa)= Mot M et 3)

n(N,T)-L, M n(NT) A~y M
v T tennmy T QS 4 1)1 @7 tonnry)

whereT — number of the episod® — maximum forward
trace length.

The pseudocode of Fig. 6 depicts Sarsa-P algorithen:
approach of TD-P applied to the Sarsa algorithm.

C. Benefits of the Approach

Of course, there’s no idea to apply neural-netwdksed
algorithms for “simple” problems, e.g., for thosethwfully
observable environment and easy identifiable stafesy
practical benefits for such algorithms can be etgmbonly in
“hard conditions”, so here we assume that the problare
hard enough to be worth using neural networks taehthe
value function.

Advantages of approaches with eligibility traceserov
traditional TD algorithms are well known — such aithms
are faster.

In terms of ideology, the main advantage of theppeed
approach of TD-P over eligibility traces is dimimesl amount
of training operations needed for the neural nekywializing
the state-action value function:

o In algorithms with eligibility traces, the value is
computed for the current state, and then propagated
back over the trace by performing training manyetm
for each state-action in the trace;

« In this TD-P approach, travelling over the tracelame
just to compute the value, and then training
performed only once — for the current state.

Although this advantage tends to be a bit heur{sticause
it can be sensed only in special conditions); in dae
considerable, if the training process is heavyaidgrm.

is

I1l. EXPERIMENTAL WORK

A. The Problems to Solve

The experimentation was done on relative simpldlgras
just handled as if the environment was not fullsetvable.
The goal of the experimentation was to show such an
approach working, as well as be able to outperfatimer
methods in certain “hard” conditions.

The idea of the experiments was very simple: the e

algorithms were tested on two deterministic griddaio
problems: 5x6 and 7x8 (See Figs 7 and 8) and theutsu
were compared against the “suboptimal policies”e(Blet of
suboptimal policies was obtained as statistics utjno
traditional TD algorithms as a set of possible @ddifor each
state encountered at least in 5% of cases). Eathaas run
until a suboptimal policy was obtained (good résuwt
100,000 episodes were reached (bad result). Tlceuis rate
v=0.9 was used. The environments of the problems et to
behave as if they were not fully observable.

White cells denote normal (nonterminal) stateschbleells
stand for the wall, while shaded cells represembiteal states.
A number in a cell denotes the reward of a movéhitocell.

There are 4 actionsip, down left, right, which cause the

agent to move one cell in the corresponding dioectiThe
state remains unchanged if the agent tries to fythefgrid or
against the wall.

Sarsa (Fig. 2);

o Sarsaf) (Fig. 3) with two different maximum trace
lengths — 3 and 5;

o Sarsa-P (Fig. 6) with two different maximum trace
lengths — 3 and 5.

For neural networks, the following coding was used:

o State — two numbers from the interval [0, 1]
(corresponding to the horizontal and vertical posibf
the state in the grid);

« Action — one number from the interval [0, 1].

Neural network (multi-layer perceptron) architeesiused

(one hidden layer):

« Value function: 3-40-1

« Transition rewards (Sarsa-P only): 3-40-1

» Transition states (Sarsa-P only): 3-40-2

Other parameters of the experiments:

« Maximum count of episodes in a trial — 100,000.
« Learning rates for neural networks — 0.1.

» Decay rate.=0.9 (Sarsa() only)

-1 -1 « Policies were computed from the corresponding value
-1 -1 functions ine-greedy manner witb=30%.
-1 | -10 The forward trace length function(-,-) was realised by the
-1 -1 following function (Eq. (4)):
-1 -1
. n(N,T) = @
! — N(N,-T-D+g(N-n(N,T-2); T>0
)
— — whereT — number of the episod®& — maximum forward
1= 1 trace lengthg — change rate (for the current experimentagjon

was set to 0.0001).

PN W A OO

AN
\

Forward trace length, n (N, T)

PP, LL,LELSL, LSS LSS

)

C RV R P A AP P
Episode number in a trial, T

Fig. 7. lllustration of the forward trace lengtm€tionn(-,-) (Eq. (4)) used in
Sarsa-P algorithm (Fig. 6) to avoid looking forwaab far in the first
episodes

C. Experimental Results

The total of 164 experimental trials was perfornedorm
the final results (Fig. 8). Two of there problemsres solved
via five different variants of the algorithms (2xB¥-cases).
Amount of trials which converged to a suboptimaigo(i.e.,

_ . _ . a satisfactory result) was obtained.
B. Configuration of the Testing Environment Ca. 58% of trials of the “easiest” problem 5x6 cemed

The problems were tried to solve via three follogvinsuccessfully. Best results were obtained by Skrsa(
algorithms, all of which used a neural network asatue
function:

. Problem 7x8 and its suboptimal policies

Only about 18% of trials converged in the case & tdepending on the maximum length of the trace). diubdr
“harder” problem 7x8, and here the best result eashed by probably signal for instability of the algorithm @s current

the Sarsa-P algorithm. realization.
Summary of the results for different kinds of tharsa
algorithm featured by neural networks as value tionc IV. CONCLUSION

o Best results for the problem 5x6 were reached byThe proposed approach combines several methods or
Sarsak); techniques to extend reinforcement learning:

o Sarsal) was generally better than traditional Sarsa. « Using traces (like eligibility traces) to visit @hstates;
This would be just a little complement to credilyilof « Using approximators for value functions;
experimentation with such configuration; o Exploiting the model of the environment to obtain

« Best results for the problem 7x8 were reached by additional information.

Sarsa-P; The approach has been designed for use in spéleéicl”

» Traditional Sarsa was absolute unable to solve tbenditions of problem solving — not fully obsenabl
problem 7x8; environment with potentially unidentifiable states.

o Sarsa-P was surprisingly weak on solving the “easy” The main goal of the experimentation was to shogh<n
problem 5x6. approach working, and this has been reached - the

corresponding algorithm has shown competitive tesul

120% against other methods.

o 100% Although Sarsa-P was weak in solving one of th_ebtmms:

. . N 5x6; it cIearI_y outperformed other algor_lthms onvew the

g s i “more complicated” problem 7x8, and this keepspteposed

5 eom :ig approach of TD-P promising for further development.

4 39% 38%

8§ T ol - REFERENCES

20% 1 % " [1] K. Framling. “Replacing eligibility trace for actievalue learning with

0% 1 ‘ 0% ‘ _L function approximation,”’European Symposium on Atrtificial Neural
Sarsa-P N=5 Sarsa-P N=3 Sarsa Sarsa(\) N=3 Sarsa(A) N=5 Networks Bruges, Belgium: Apr. 2007

[2] S. P.Singh and R. S. Sutton, “Reinforcement Learmiith Replacing

Eligibility Traces,”Machine Learning22:123-158, 1996.

R. S. Sutton and A. G. BartBeinforcement Learning. An introduction.

Cambridge,MA: MIT Press/A Bradford Book, 1998.

[4] R. S. Sutton, “Dyna, an integrated architectureldéarning, planning,
and reacting,'SIGART Bulletin2:160-163, 1991.

Fi

g. 8. Experimental results — percentage ofgrzanverged, according the 3
problems solved and algorithms applied (3]

The most “disappointing” ones were the results afs8-P
on solving the “easiest” 5x6 problem (19% and 38%

