
Realizing Undelayed n-Step TD Prediction with
Neural Networks

Janis Zuters

Faculty of Computing, University of Latvia

Raina bulvaris 19-434, LV-1586 Riga, Latvia
janis.zuters@lu.lv

Abstract—There exist various techniques to extend

reinforcement learning algorithms, e.g., eligibility traces and
planning. In this paper, an approach is proposed, which
combines several extension techniques, such as using eligibility-
like traces, using approximators as value functions and
exploiting the model of the environment. The obtained method,
undelayed n-step TD prediction (TD-P), has produced
competitive results when put in conditions of not fully observable
environment.

I. EXTENSION TECHNIQUES OF REINFORCEMENT LEARNING

A. Eligibility Traces

Eligibility traces are one of the basic mechanisms of
reinforcement learning to handle delayed reward. The idea
behind all eligibility traces is very simple. Each time a state is
visited it initiates a short-term memory process, a trace, which
then decays gradually over time. This trace marks the state as
eligible for learning.[2]

Algorithm sarsa_lambda (n)
 Q – state-action values
 π(Q) – policy derived from Q
 γ – discount rate
 λ – decay rate
 α – learning rate
 N – maximum eligibility trace length
Begin
 Initialize Q
 Do many times
 Trace ← Empty
 s ← random nonterminal state
 a ← choose action from state s according policy π(Q)
 While s is not final state
 Append <s, a> to Trace
 r, s' ← Take action a, observe reward and next state
 a' ← choose action from state s' according policy π(Q)
 δ ← r + γQ(s',a') – γQ(s,a)
 λ* ← 1
 For N steps <s*, a*> in Trace from the end backwards
 Q(s*,a*) ← Q(s*,a*) + αδλ*
 λ* ← γλλ*
 s ← s'
 a ← a'

Fig. 1. Sarsa(λ) (with limited trace length)

There are two ways to view eligibility traces. The more

theoretical view of eligibility traces is called the forward view,
and the more mechanistic view is called the backward view.
The forward view is most useful for understanding what is

computed by methods using eligibility traces, whereas the
backward view is more appropriate for developing intuition
about the algorithms themselves.[3]

Fig. 1 depicts traditional Sarsa algorithm armed with
eligibility traces. For simplicity and consistency, it is assumed
that the environment is deterministic and the algorithms use
state-action values (not just state values).

To view the same process according the forward view, we
should look forward from the current state (to the subsequent
states) to compute its value; and it can be carried out through
making a delay in modification of state-action values.

B. Reinforcement Learning and Neural Networks

Standard reinforcement learning algorithms assume that
state-action values are stored in a table – one value per state-
action pair.

Algorithm sarsa_neural
 Ψ – supervised neural network to store state-action values
 π(Ψ) – policy derived from Ψ
 γ – discount rate
 «·» – set of features present in (·)
Begin
 Initialize Ψ
 Do many times
 «s» ← random nonterminal state
 a ← choose action from «s» according policy π(Ψ)
 While «s» does not represent terminal state
 r, «s'» ← Take action a, observe reward and next state
 a' ← choose action from «s'» according policy π(Ψ)
 v ← r + γΨ(«s',a'»)
 Train Ψ with «s, a», v
 «s» ← «s'»
 a ← a'

Fig. 2. Classic Sarsa algorithm complemented by a neural network to store
state-action values

Unfortunately this is not always possible, and big total

amount of states and actions is only one of possible reasons.
Moreover, there can be too complicated to accurately fill such
a table of values, or even to identify all the possible states and
actions, because state-action space may include continuous
variables or complex sensations. In this case the issue is that
of generalization; and a supervised neural network (e.g.,
multi-layer perceptron) is a typical choice to realize that.

The simplest way of using a neural network Ψ is to apply it
instead of value table Q (see Fig. 2 for the classic Sarsa
algorithm with a neural network as a value function). To

better describe the algorithm in such conditions, it is worth to
add a notion of set of features, e.g., «s» denotes a set of
features of some state s. In this paper, it is assumed that
possible actions are countable, and «a» means just the code of
action a obtained in order to be passed to a neural network as
an input.

Eligibility traces are also used combined with function
approximators (see [1]). Accordingly also neural networks can
be incorporated into a reinforcement learning algorithm with
eligibility traces (Fig. 3).

Algorithm sarsa_neural_lambda (N)
 Ψ – supervised neural network to store action values
 π(Ψ) – policy derived from Ψ
 γ – discount rate
 λ – decay rate
 η – learning rate for Ψ
 N – maximum eligibility trace length
 «·» – set of features present in (·)
Begin
 Initialize Ψ
 Do many times
 Trace ← Empty
 «s» ← random nonterminal state
 a ← choose action from «s» according policy π(Ψ)
 While «s» does not represent terminal state
 Append <«s», a> to Trace
 r, «s'» ← Take action a from «s», observe result
 a' ← choose action from «s'» according policy π(Ψ)
 v ← r + γΨ(«s',a'»)
 η* ← η
 For N steps <s*, a*> in Trace from the end backwards
 Train Ψ with <«s, a», v> using learning rate η*
 η* ← η*γλ
 «s» ← «s'»
 a ← a'

Fig. 3. Sarsa(λ) (with limited trace length) adjusted for using neural network
as a value function

C. Planning in Reinforcement Learning

By planning we mean looking ahead in a model of an
environment in order to enhance the reinforcement learning
process. The model is used to simulate the environment and
get some simulated experience.

Fig. 4. Relationships among learning, planning, and acting[3][1]

Extension of reinforcement learning with planning is

carried out by integrating it with learning and acting processes
(See Fig. 4).

There exist various methods to integrate planning into
reinforcement learning. A well known one is that of Dyna[4].
In Dyna, to extend learning from real experience, some
learning from simulated experience is also added.

The idea of Dyna algorithm is the following: in each step of
the episode, additional training is performed for randomly
chosen state-action pairs, according the value obtained by the
help of the environment model.

Fig. 5 shows the Dyna algorithm [4] adapted for Sarsa
learning and neural network as a value function.

Algorithm dyna_sarsa_neural
 Ψ – supervised neural network to store state-action values
 Μ – supervised neural network to model environment
 π(Ψ) – policy derived from Ψ
 γ – discount rate
 «·» – set of features present in (·)
Begin
 Initialize Ψ, Μ
 Do many times
 «s» ← current (nonterminal) state
 a ← choose action from «s» according policy π(Ψ)
 r, «s'» ← Take action a, observe reward and next state
 a' ← choose action from «s'» according policy π(Ψ)
 v ← r + γΨ(«s',a'»)
 Train Ψ with «s, a», v
 Train Μ with <«s, a», <r, «s'»>>
 Repeat N times
 «s*» ← random previously observed state
 a* ← random action previously taken in s
 r*, «s** » ← Μ(«s*,a*») % Take action “in model”
 a** ← choose action from «s** » according policy π(Ψ)
 v ← r* + γΨ(«s** ,a** »)
 Train Ψ with «s*, a*», v

Fig. 5. Dyna-Sarsa algorithm

II. UNDELAYED N-STEP TD PREDICTION

This chapter is to describe the “Undelayed n-step TD
prediction” (TD-P), the author’s proposed approach to
organize forward-looking mechanism through exploring the
environment model, realized by a neural network. In some
technical details, this approach links both with eligibility trace
mechanism (for using a trace to visit other states) and the
Dyna algorithm (for using a model to predict the behaviour of
the environment).

A. Inspiration

The main idea of the proposed approach is just ‘looking
forward’ for additional information (instead of looking back,
used in most algorithms because of being less complicated in
terms of computation) to enhance the algorithm.

Theoretically, looking forward can be realized via several
methods, e.g., n-step TD prediction, where state-action values
are updated in the direction of n-step target R (See Eq. (1),
adapted from [3]):

),(...

),(
1

3
2

21
)(

NtNt
n

Nt
N

ttt
N

t

asQr

rrrasR

+++
−

+++

+++

+++=

γγ

γγ
.

(1)

Here, looking forward is formal, actually realized through
delay mechanism (i.e., it is just a ‘forward view’, not real
looking forward). A “true” looking forward is possible
through involving prediction of future states.

B. The Algorithm

N-step prediction can be realized directly through looking
forward in the model of environment (instead of the
environment itself, like in the Dyna algorithm (Fig. 5)) thus
modelling future steps of the episode (So Eq. (1) turns into Eq.
(2)):

),(...

),(
1

3
2

21
)(

NtNt
N

Nt
N

ttt
N

t

asQr

rrrasR

+
Μ
+

Μ
+

−

Μ
+

Μ
++

+++

+++=

γγ

γγ

(2)

where r i – actual reward; r i
(Μ) – modelled future reward;

si
(Μ) – modelled future state.

Procedure sarsa_P (N)
 Ψ – supervised neural network to store action values
 Μ – supervised neural network to model environment
 π(Ψ) – policy derived from Ψ
 γ – discount rate
 N – maximum forward trace length
 n(·,·) – forward trace length function
 «·» – set of features present in (·)
Begin
 Initialize Ψ, Μ
 T ← 0
 Do many times
 T ← T + 1
 «s» ← random nonterminal state
 a ← choose action from «s» according policy π(Ψ)
 While «s» does not represent terminal state
 r, «s'» ← Take action a from «s», observe result
 v ← r
 γ* ← γ
 «s*» ← «s'»
 n* ← n(T)
 While «s*» does not represent terminal state and n* ≥ 0
 a* ← choose action from «s*» according policy π(Ψ)
 r*, «s** » ← Μ(«s*,a*») % Take action “in model”
 n* ← n* – 1
 If «s** » represents terminal state or τ* ≤ 0
 v ← v + γ*r*
 Else
 v ← v + Ψ(«s*,a*»)
 γ* ← γγ*
 «s*» ← «s** »
 Train Ψ with <«s, a», v>
 Train Μ with <«s, a», <r, «s'»>>
 a' ← choose action from «s'» according policy π(Ψ)
 «s» ← «s'»
 a ← a'

Fig. 6. Sarsa-P: Sarsa with TD-P

Unlike the Dyna algorithm (Fig. 5) and also eligibility-
trace-based algorithms (Fig. 3), in this approach, additional
activities within a step of an episode concern predicted future
states, instead of previously observed ones.

There’s one more complication within the context of this
approach: in the beginning, while the available information on
the environment is insufficient, it isn’t reasonable to look far
forward. Therefore, to avoid “unacceptable looking forward”
in the beginning of the trial, the maximum count of steps (to
look forward) N should be replaced by some function n(⋅,⋅)
(See Eq. (3)), designed in a way that for the first episodes no
looking forward is performed.

),(

...),(

),n(,),n(,
),n(

),n(,
1),n(

2,1,
)),(n(

,

TNtTTNtT
TN

TNtT
TN

tTtT
TN

tT

asQr

rrasR

+
Μ

+
Μ
+

−

Μ
++

+

+++=

γγ

γ

(3)

where T – number of the episode, N – maximum forward
trace length.

The pseudocode of Fig. 6 depicts Sarsa-P algorithm: the
approach of TD-P applied to the Sarsa algorithm.

C. Benefits of the Approach

Of course, there’s no idea to apply neural-networks-based
algorithms for “simple” problems, e.g., for those with fully
observable environment and easy identifiable states. Any
practical benefits for such algorithms can be expected only in
“hard conditions”, so here we assume that the problems are
hard enough to be worth using neural networks to model the
value function.

Advantages of approaches with eligibility traces over
traditional TD algorithms are well known – such algorithms
are faster.

In terms of ideology, the main advantage of the proposed
approach of TD-P over eligibility traces is diminished amount
of training operations needed for the neural network, realizing
the state-action value function:

• In algorithms with eligibility traces, the value is
computed for the current state, and then propagated
back over the trace by performing training many times –
for each state-action in the trace;

• In this TD-P approach, travelling over the trace is done
just to compute the value, and then training is
performed only once – for the current state.

Although this advantage tends to be a bit heuristic (because
it can be sensed only in special conditions); it can be
considerable, if the training process is heavy to perform.

III. EXPERIMENTAL WORK

A. The Problems to Solve

The experimentation was done on relative simple problems
just handled as if the environment was not fully observable.
The goal of the experimentation was to show such an
approach working, as well as be able to outperform other
methods in certain “hard” conditions.

The idea of the experiments was very simple: the
algorithms were tested on two deterministic grid-world
problems: 5×6 and 7×8 (See Figs 7 and 8) and the outputs
were compared against the “suboptimal policies” (The set of
suboptimal policies was obtained as statistics through
traditional TD algorithms as a set of possible actions for each
state encountered at least in 5% of cases). Each trial was run
until a suboptimal policy was obtained (good result) or
100,000 episodes were reached (bad result). The discount rate
γ=0.9 was used. The environments of the problems were set to
behave as if they were not fully observable.

White cells denote normal (nonterminal) states; black cells
stand for the wall, while shaded cells represent terminal states.
A number in a cell denotes the reward of a move to this cell.

There are 4 actions: up, down, left, right, which cause the
agent to move one cell in the corresponding direction. The
state remains unchanged if the agent tries to go off the grid or
against the wall.

-1 -1 -1 10 -1
-1 -1 -1 -1 -1
-1 -10 -10 -10 -1
-1 -1 -1 -1 -1
-1 -1 -10 -1 -1 -1

↓ ←↓ ←↓ ←
↓ ← ← ← ↑
↓ ↑
→ → → ↓ ↑
↑→ ↑ → → ↑

Fig. 7. Problem 5×6 and its suboptimal policies

-1 -1 -1 -1 -20 -1 -1 100
-1 -1
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
 -1 -5 -5 -1

-1 -1 -1 -1 -5 -8 -1 -1
-1 -1 -1 -1 -10 -1 -1 -1

↓→ → → → → → →
↕ ↑
↑ ↓↔ ↔ ←↓ ↑ ← ←
↑→ ←↑ ↕ ↑ ←↑ ←↑

 ↕ ↑ ↑ ↑
↓→ ↓→ ↓→ ↕→ ↓↔ ↑→ ↑→ ↑
↑→ ↑→ ↑→ ↑→ ↑→ ↑ ↑→ ↑

Fig. 8. Problem 7×8 and its suboptimal policies

B. Configuration of the Testing Environment

The problems were tried to solve via three following
algorithms, all of which used a neural network as a value
function:

• Sarsa (Fig. 2);
• Sarsa(λ) (Fig. 3) with two different maximum trace

lengths – 3 and 5;
• Sarsa-P (Fig. 6) with two different maximum trace

lengths – 3 and 5.
For neural networks, the following coding was used:
• State – two numbers from the interval [0, 1]

(corresponding to the horizontal and vertical position of
the state in the grid);

• Action – one number from the interval [0, 1].
Neural network (multi-layer perceptron) architectures used

(one hidden layer):
• Value function: 3-40-1
• Transition rewards (Sarsa-P only): 3-40-1
• Transition states (Sarsa-P only): 3-40-2

Other parameters of the experiments:
• Maximum count of episodes in a trial – 100,000.
• Learning rates for neural networks – 0.1.
• Decay rate λ=0.9 (Sarsa(λ) only)
• Policies were computed from the corresponding value

functions in ε-greedy manner with ε=30%.
The forward trace length function n(⋅,⋅) was realised by the

following function (Eq. (4)):





>−−+−

=
=

0));1,n(()1,n(

0;0
),n(

TTNNgTN

T
TN

(4)

where T – number of the episode, N – maximum forward
trace length, g – change rate (for the current experimentation g
was set to 0.0001).

0

1

2

3

4

5

6

0
60

0
12

00
18

00
24

00
30

00
36

00
42

00
48

00
54

00
60

00
66

00
72

00
78

00
84

00
90

00
96

00

Episode number in a trial, T

Fo
rw

ar
d

tr
ac

e
le

ng
th

, n
(N

,T
)

N=3

N=5

Fig. 7. Illustration of the forward trace length function n(⋅,⋅) (Eq. (4)) used in
Sarsa-P algorithm (Fig. 6) to avoid looking forward too far in the first
episodes

C. Experimental Results

The total of 164 experimental trials was performed to form
the final results (Fig. 8). Two of there problems were solved
via five different variants of the algorithms (2×5=10 cases).
Amount of trials which converged to a suboptimal policy (i.e.,
a satisfactory result) was obtained.

Ca. 58% of trials of the “easiest” problem 5×6 converged
successfully. Best results were obtained by Sarsa(λ).

Only about 18% of trials converged in the case of the
“harder” problem 7×8, and here the best result was reached by
the Sarsa-P algorithm.

Summary of the results for different kinds of the Sarsa
algorithm featured by neural networks as value function:

• Best results for the problem 5×6 were reached by
Sarsa(λ);

• Sarsa(λ) was generally better than traditional Sarsa.
This would be just a little complement to credibility of
experimentation with such configuration;

• Best results for the problem 7×8 were reached by
Sarsa-P;

• Traditional Sarsa was absolute unable to solve the
problem 7×8;

• Sarsa-P was surprisingly weak on solving the “easy”
problem 5×6.

19%

38%

78% 75%

100%

39%
31%

0%
7%

14%

0%

20%

40%

60%

80%

100%

120%

Sarsa-P N=5 Sarsa-P N=3 Sarsa Sarsa(λ) N=3 Sarsa(λ) N=5

C
o

n
ve

rg
en

ce
 r

at
e

5×6

7×8

Fig. 8. Experimental results – percentage of trials converged, according the

problems solved and algorithms applied

The most “disappointing” ones were the results of Sarsa-P

on solving the “easiest” 5×6 problem (19% and 38%

depending on the maximum length of the trace). It would
probably signal for instability of the algorithm or its current
realization.

IV. CONCLUSION

The proposed approach combines several methods or
techniques to extend reinforcement learning:

• Using traces (like eligibility traces) to visit other states;
• Using approximators for value functions;
• Exploiting the model of the environment to obtain

additional information.
The approach has been designed for use in specific “hard”

conditions of problem solving – not fully observable
environment with potentially unidentifiable states.

The main goal of the experimentation was to show such an
approach working, and this has been reached – the
corresponding algorithm has shown competitive results
against other methods.

Although Sarsa-P was weak in solving one of the problems:
5×6; it clearly outperformed other algorithms on solving the
“more complicated” problem 7×8, and this keeps the proposed
approach of TD-P promising for further development.

REFERENCES
[1] K. Framling. “Replacing eligibility trace for action-value learning with

function approximation,” European Symposium on Artificial Neural
Networks, Bruges, Belgium: Apr. 2007

[2] S. P. Singh and R. S. Sutton, “Reinforcement Learning with Replacing
Eligibility Traces,” Machine Learning, 22:123-158, 1996.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning. An introduction.
Cambridge,MA: MIT Press/A Bradford Book, 1998.

[4] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,
and reacting,” SIGART Bulletin, 2:160–163, 1991.

