Course title	Dynamical systems	
Volume (number of credit points)	4	
Volume (number of contact hours)	64	
Number of lectures	48	
Number of seminars	16	
<i>Course level:</i> 1-4 – bachelor;	5-6	
5-6 – master		
Prerequisites	Ordinary differential equations	
Science field, science sub-field	Mathematics, differential equations	
Equivalent course		

COURSE DESIGNER

Name	Surname
Andrejs	Reinfelds

COURSE ABSTRACT

The aim of course is to give the introduction in the qualitative theory of dynamical systems and differential equations.

RESULTS

Students are responsible for all topics covered by the course "Dynamical Systems" and are able to solve examples.

REQUIREMENT for AWARDING CREDIT POINTS

Report at seminar Examination – oral exam (2 theoretical questions and example).

COURSE PLAN

No	Topic	Planned amount in hours
1.	Classical theory of dynamical systems	6
2.	Linear dynamical systems	
3.	Dynamical systems in one and two dimensions	6
4.	Stability via Liapunov's method	
5.	Classification of linear dynamical systems	
6.	Classification of dynamical systems in the neighbourhood	
	of hyperbolic point	
7.	Principle of reduction	
8.	Nonlinear dynamical systems	

LITERATURE

Basic textbooks

1.	L. Perko. Differential equations and dynamical systems. Springer, 2001
2.	V. Arnold. Ordinary differential equations. Springer, 2006
3.	V. Arnold. Geometrical methods in the theory of ordinary differential
	equations. Springer, 1988
4.	L. Reiziņš. Stabilitātes teorija., LVU, 1979
5.	A. Reinfelds. The reduction of discrete dynamical and semidynamical
	systems in metric space. In: Six lectures on dynamical systems. World
	Scientific, 1996, p. 267-312

Further reading

1.	M.W. Hirsch, S. Smale, R. Devaney. Differential equations, dynamical
	systems and introduction to chaos. Elsvier, 2004
2.	A. Katok, B. Hasselblatt. Introduction to the modern theory of dynamical
	systems. Cambridge University Press, 1995
3.	L.C. Robinson. An introduction to dynamical systems. Continuous and
	discrete. Prenctice Hall. 2004
4.	P. Hartman. Ordinary differential equations. Birkhauser, 1982

Periodicals, internet resources and other sources

1.	E.R. Scheinerman. Invitation to Dynamical Systems, 1996
	http://www.mts.jhu.edu/~ers/book.pdf