Quantum algorithms for the hidden shift problem of Boolean functions

Hidden shift problem for Boolean functions

The hidden shift problem for Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is the following problem: given an oracle access to shifted function

$$f_{\vec{s}}(\vec{x}) := f(\vec{x} + \vec{s})$$

for some unknown value of $\vec{s} \in \mathbb{F}_2^n$, determine the value of \vec{s} by querying the oracle on different inputs. The number of queries needed to determine the value of \vec{s} is called the *query complexity* of the hidden shift problem for f.

Fourier analysis on the Boolean cube

The Fourier transform of a Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is the function $\hat{f}: \mathbb{F}_2^n \to \mathbb{R}$ defined as

$$\hat{f}(\vec{w}) := \frac{1}{2^n} \sum_{\vec{x} \in \mathbb{F}_n^n} (-1)^{\vec{w} \cdot \vec{x} + f(\vec{x})}$$

where the arithmetic in the exponent is modulo 2.

Bent and delta functions

Boolean function f is

- ▶ a **bent function** if it has a flat Fourier spectrum: $|\widehat{f}(\vec{w})| = 2^{-n/2} \quad \forall \vec{w} \in \mathbb{F}_2^n$
- ▶ a **delta function** if $\exists \vec{x}_0 \in \mathbb{F}_2^n$ such that

$$f(x) = \begin{cases} 1 & \text{if } x = x_0 \\ 0 & \text{otherwise} \end{cases}$$

Query complexity of bent and delta functions

Maris Ozols^{1,2}, Martin Roetteler¹, and Jérémie Roland¹ ¹NEC Laboratories America, Inc.

Main idea behind the algorithm

Spiky state (Fourier spectrum)

$$|\psi_{\hat{f}}(\vec{s})\rangle := \sum_{\vec{w} \in \mathbb{F}_2^n} (-1)^{\vec{w} \cdot \vec{s}} \hat{f}(\vec{w}) |\vec{w}\rangle \qquad |\psi(\vec{s})\rangle$$

The algorithm relies on the following:

1. Using one oracle call to $O_{f_{\vec{s}}}$, we can construct $|\psi_{\hat{f}}(\vec{s})\rangle$ $|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_{\vec{s}}} - H^{\otimes n} - H^{\otimes n}$ 2. From $|\psi(\vec{s})\rangle$, we can easily obtain the hidden shift \vec{s} $|\psi(ec{s})
angle --H^{\otimes n} --H^{\otimes n}$

Therefore, the goal is to prepare $|\psi(\vec{s})\rangle$ from $|\psi_{\hat{f}}(\vec{s})\rangle$, i.e., we would like to implement the operation

 $\hat{f}(\vec{w}) \left| \vec{w} \right\rangle \mapsto \frac{1}{\sqrt{2^n}} \left| \vec{w} \right\rangle.$

For bent functions, the Fourier spectrum is flat $(|\hat{f}(\vec{w})| = \frac{1}{\sqrt{2n}})$, and this operation may immediately be implemented [1]. In general, this operation is not unitary and the solution is to entangle this state with an ancillary qubit to create a state

$$\Psi_{\vec{\varepsilon}}(\vec{s})\rangle = \sum_{\vec{w}} (-1)^{\vec{w}\cdot\vec{s}} \left|\vec{w}\rangle \left(\sqrt{|\hat{f}(\vec{w})|^2}\right)\right|^2$$

where $0 \le \varepsilon_{\vec{w}} \le |\hat{f}(\vec{w})|$. By using amplitude amplification on the ancilla being in state $|1\rangle$, we can in turn prepare a state

$$\left|\psi_{\vec{\varepsilon}}(\vec{s})\right\rangle := \frac{1}{\sqrt{q_{\vec{\varepsilon}}}} \sum_{\vec{w}} (-1)^{\vec{w}\cdot\vec{s}}$$

which has large overlap over $|\psi(\vec{s})\rangle$ if $\vec{\varepsilon}$ is rather flat.

Amplitude amplification

The amplitude amplification part of our algorithm is $\mathcal{A} := \left(\operatorname{ref}_{|\psi_{\vec{\varepsilon}}(\vec{s})\rangle} \cdot (I_n \otimes \operatorname{ref}_{|1\rangle}) \right)^k,$

where $\operatorname{ref}_{|\psi_{\vec{e}}(\vec{s})\rangle}$ and $\operatorname{ref}_{|1\rangle}$ are reflections through these states. It remains to optimize the vector $\vec{\varepsilon}$ to minimize $k = O(1/\sqrt{q_{\vec{\varepsilon}}})$ while keeping a large success probability $p_{\vec{e}}$, where

$$q_{\vec{\varepsilon}} = \left\| \left(I_n \otimes |1\rangle \langle 1| \right) \left| \Psi_{\vec{\varepsilon}}(\vec{s}) \rangle \right\|$$
$$p_{\vec{\varepsilon}} = \left| \left\langle \psi(\vec{s}) | \psi_{\vec{\varepsilon}}(\vec{s}) \rangle \right|^2 = \frac{1}{2^n} \frac{\|\vec{s}\|}{\|\vec{s}\|}$$

 $\|\vec{\varepsilon}\|_2$