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Hidden shift problem for Boolean functions

The hidden shift problem for Boolean function f : Fn2 → F2 is
the following problem: given an oracle access to shifted function

f~s(~x) := f (~x +~s)
for some unknown value of ~s ∈ Fn2, determine the value of ~s by
querying the oracle on different inputs. The number of queries
needed to determine the value of ~s is called the query complexity
of the hidden shift problem for f .

Fourier analysis on the Boolean cube

The Fourier transform of a Boolean function f : Fn2 → F2 is
the function f̂ : Fn2 → R defined as

f̂ (~w) :=
1
2n

∑
~x∈Fn2

(−1)~w·~x+f (~x)

where the arithmetic in the exponent is modulo 2.

Bent and delta functions

Boolean function f is
I a bent function if it has a flat Fourier spectrum:

|̂f (~w)| = 2−n/2 ∀~w ∈ Fn2
I a delta function if ∃~x0 ∈ Fn2 such that

f (x) =

1 if x = x0
0 otherwise

Query complexity of bent and delta functions

Bent functions Delta functions

Classical: Ω(n) Θ(2n)
Quantum: 1 Θ(

√
2n)

Spectrum:

Main idea behind the algorithm

Spiky state (Fourier spectrum) Flat state∣∣∣ψf̂(~s)
〉

:=
∑
~w∈Fn2(−1)

~w·~sf̂ (~w)
∣∣∣~w〉 ∣∣∣ψ(~s)

〉
:= 1
√
2n

∑
~w∈Fn2(−1)

~w·~s
∣∣∣~w〉

The algorithm relies on the following:

1. Using one oracle call to Of~s, we can construct
∣∣∣ψf̂(~s)

〉
|0〉⊗n / H⊗n / Of~s / H⊗n /

∣∣∣ψf̂(~s)
〉

2. From
∣∣∣ψ(~s)

〉
, we can easily obtain the hidden shift ~s∣∣∣ψ(~s)

〉
/ H⊗n /

∣∣∣~s〉
Therefore, the goal is to prepare

∣∣∣ψ(~s)
〉
from

∣∣∣ψf̂(~s)
〉
, i.e., we

would like to implement the operation

f̂ (~w)
∣∣∣~w〉
7→

1
√
2n

∣∣∣~w〉
.

For bent functions, the Fourier spectrum is flat (|f̂ (~w)| = 1
√
2n
),

and this operation may immediately be implemented [1].
In general, this operation is not unitary and the solution is to
entangle this state with an ancillary qubit to create a state∣∣∣Ψ~ε(~s)

〉
=

∑
~w

(−1)~w·~s
∣∣∣~w〉 (√

|f̂ (~w)|2 − ε2
~w |0〉 + ε~w |1〉

)
,

where 0 ≤ ε~w ≤ |f̂ (~w)|. By using amplitude amplification on the
ancilla being in state |1〉, we can in turn prepare a state∣∣∣ψ~ε(~s)〉 :=

1
√q~ε

∑
~w

(−1)~w·~sε~w
∣∣∣~w〉

,

which has large overlap over
∣∣∣ψ(~s)

〉
if ~ε is rather flat.

Amplitude amplification

The amplitude amplification part of our algorithm is
A :=

(
ref|ψ~ε(~s)〉 · (In ⊗ ref|1〉)

)k
,

where ref|ψ~ε(~s)〉 and ref|1〉 are reflections through these states.
It remains to optimize the vector ~ε to minimize k = O

(
1/√q~ε

)
while keeping a large success probability p~ε, where

q~ε =
∥∥∥(In ⊗ |1〉 〈1|) ∣∣∣Ψ~ε(~s)

〉∥∥∥2 =
∥∥∥~ε∥∥∥22 ,

p~ε =
∣∣∣〈ψ(~s)|ψ~ε(~s)

〉∣∣∣2 =
1
2n

∥∥∥~ε∥∥∥21∥∥∥~ε∥∥∥22.

Description via SDP

The optimal choice of ~ε and the query complexity of the cor-
responding algorithm can be found by solving the following
semidefinite optimization problem:

maxM�0 TrM s.t. ∀~w ∈ Fn2 : f̂ (~w)2 ≥ M~w,~w
Tr

(
(J − c2nI)M

)
≥ 0 (SDP)

where c is the desired success probability and I, J are the iden-
tity and all-ones matrices, respectively.

Optimal solution

The optimal solution of SDP corresponds to a rank-1 matrix
M = ~ε · ~εT, where ~ε ∈ R2n is the “water filling” vector of the
Fourier spectrum of f given by

ε~w =

 f̂ (~w) if |f̂ (~w)| ≤ δ
δ otherwise

Main result

Theorem. If c ≤ 1 − N0/2n, where N0 is the number of
zero Fourier coefficients, then SDP achieves its maximum at
M = ~ε · ~εT with objective value equal to

∥∥∥~ε∥∥∥22, where ~ε is the
“water-filling” vector of f̂ for δ such that

1
2n

∥∥∥~ε∥∥∥21∥∥∥~ε∥∥∥22 = c

If c > 1 −N0/2n, then SDP has no feasible point.
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