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Resampling

Classical p→ s resampling problem

I Given: p, s ∈ Rn+ with ‖p‖1 = ‖s‖1 = 1
Ability to sample from distribution p

I Task: Sample from distribution s

I Question: How many samples from p we need to prepare one
sample from s ?

I Note: Samples are pairs (k, ξ(k)) where ξ(k) is not accessible
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Classical rejection sampling

Algorithm

I Accept k with probability γsk/pk
I Avg. prob. to accept:

∑
k pk · γsk/pk = γ

I Query complexity: Θ(1/γ)

I Introduced by von Neumann in 1951
I Has numerous applications:

I Metropolis algorithm [MRRTT53]
I Monte-Carlo simulations
I optimization (simulated annealing), etc.
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Quantum resampling

Quantum π → σ resampling problem

I Given: π,σ ∈ Rn+ with ‖π‖2 = ‖σ‖2 = 1
Oracle for preparing |π〉 =

∑n
k=1 πk|k〉|ξ(k)〉

I Task: Prepare |σ〉 =
∑n

k=1 σk|k〉|ξ(k)〉
I Question: How many |π〉s we need to produce one |σ〉?
I Note: States |ξ(k)〉 are not known

Main theorem (exact case)

The quantum query complexity of the exact π → σ quantum
resampling problem is Θ(1/γ) where γ = mink |πk/σk|

Approximate preparation

Task: Prepare
√

1− ε|σ〉+
√
ε|error〉

⇐⇒ Prepare |δ〉 with σ · δ ≥
√

1− ε
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Quantum rejection sampling algorithm

1. Use the oracle to prepare

|0〉|π〉 = |0〉
n∑
k=1

πk|k〉|ξ(k)〉

2. Pick some δ ∈ Rn+ and rotate the state in the first register:
n∑
k=1

(√
|πk|2 − |δk|2 |0〉+ δk |1〉

)
|k〉|ξ(k)〉

3. Measure the first register:

I w.p. ‖δ‖22 the state collapses to
n∑

k=1

δ̂k|k〉|ξ(k)〉

where δ̂k = δk/‖δ‖2
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Quantum rejection sampling algorithm

Subroutine

one copy of |π〉 7→
n∑
k=1

δ̂k|k〉|ξ(k)〉 w.p. ‖δ‖22

Amplification

I Näıve: repeat 1/‖δ‖22 times to succeed w.p. ≈ 1

I Quantum: 1/‖δ‖2 repetitions of amplitude amplification
suffice [BHMT00]

Summary

We can prepare
∑n

k=1 δ̂k|k〉|ξ(k)〉 with O(1/‖δ‖2) quantum
queries

Goal: preparing |σ〉
I What δ should we choose?

I We are done if σ · δ̂ ≥
√

1− ε where δ̂ = δ/‖δ‖2
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Optimization

Problem
I minδ 1/‖δ‖2 s.t. σ · δ̂ ≥

√
1− ε

and 0 ≤ δk ≤ πk
I This can be stated as an SDP

Optimal solution

I Let δk(γ) = min{πk, γσk}
I Choose γ̄ = max γ s.t. σ · δ̂(γ) ≥

√
1− ε

Main theorem
The quantum query complexity of the ε-approximate π → σ
quantum resampling problem is Θ(1/‖δ(γ̄)‖2)
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Applications

Implicit use

I Synthesis of quantum states [Grover, 2000]

I Linear systems of equations [Harrow, Hassidim and Lloyd 2009]

I Fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

I Speed up quantum Metropolis sampling algorithm by
[Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]

I New quantum algorithm for the hidden shift problem of any
Boolean function

Future applications

I Preparing PEPS [Schwarz, Temme, Verstraete, 2011]
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