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Classical channels

x ∈ X y ∈ YN
Alice Bob

Conditional probability distribution

I N (x|y) = Pr(output y | input x) completely characterizes N
I N ⊗M corresponds to one parallel use of N and M

QWERTY + “fat fingers”
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Confusability graph

I Inputs x, x′ ∈ X are confusable if ∃y ∈ Y such that
N (y|x) > 0 and N (y|x′) > 0

I GN = (X,E), the confusability graph of N , has edges
E = {xx′ ∈ X ×X | x and x′ are confusable}

I Strong graph product: GN1⊗N2 = GN1 �GN2
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Zero-error capacity

Single-use capacity

I Let M(N ) be the number of different messages that can be
sent with zero error by a single use of N

I Depends only on GN
I M(N ) = α(GN ), the independence number of GN
I NP-hard to compute

M(C5) = 2
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Zero-error capacity

Asymptotic capacity (Shannon, 1956)

I The zero-error capacity of N is

Θ(N ) = lim
n→∞

n
√
M(N⊗n)

where M(N⊗n) = α(GN⊗n) = α(G�nN )

I Not known to be decidable

Θ(C5) ≥
√

5 ≈ 2.236 > M(C5) = 2
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An upper bound

Orthogonal representation of a graph

Let G = (V,E) be a graph. Vectors R = {ri ∈ Rd : i ∈ V } form
an orthonormal representation of G if

rT
i · rj =

{
1 if i = j

0 if ij ∈ E

Lovász theta

ϑ(G) = max
h,R

∑
i

(hT · ri)2

Theorem (Lovász, 1979)

Θ(G) ≤ ϑ(G)
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Example (pentagon)
An optimal solution for C5 looks like this:

rk =

 cos θ
sin θ cosϕk
sin θ sinϕk



where h = (1, 0, 0) and cos θ = 1
4√5

, ϕk = 2πk
5

ϑ(C5) =

4∑
k=0

(hT · rk)2 = 5

(
1
4
√

5

)2

=
√

5

We conclude that Θ(C5) =
√

5
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Summary so far. . .

In the context of zero-error communication we don’t care about
N , but only about the confusability graph GN

Definitions

M(G) = α(G)

Θ(G) = lim
n→∞

n

√
α(G�n)

ϑ(G) = . . . (not so important) . . .

Relations

M(G) ≤ Θ(G) ≤ ϑ(G)
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Quantum stuff. . .
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Classical channels assisted by entanglement

x ∈ X y ∈ YN
Alice Bob

|ψ〉

Single-use and asymptotic capacity

I ME(N ) is the number of different messages that can be sent
with zero error by a single use of N and entanglement

I The entanglement-assisted zero-error capacity of N is

ΘE(N ) = lim
n→∞

n
√
ME(N⊗n)

11



Entanglement-assisted capacity

Properties

I ME(N ) and ΘE(N ) are completely determined by GN

I ME(G) ≥M(G) and ΘE(G) ≥ Θ(G)

I No algorithm known for computing ME(G) or ΘE(G)

Theorem (B1-DSW2, 2010)

ΘE(G) ≤ ϑ(G)

Problem
Does there exist a graph G such that ΘE(G) > Θ(G)?

I We need a quantum protocol to lower bound ΘE(G)

I Lovász bound is not good enough to upper bound Θ(G)

1Beigi [arXiv:1002.2488]
2Duan, Severini, Winter [arXiv:1002.2514]
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Lower bound on ΘE and upper bound on Θ

Theorem (CLMW3, 2009)

If G has an orthonormal representation in Cd and its vertices can
be partitioned into k disjoint cliques of size d then ΘE(G) = k

Theorem (Haemers bound, 1979)

Θ(G) ≤ R(G) = min
B

rankB

where minimization is over all matrices B that fit G

Definition
An |V | × |V | matrix B (over any field) fits graph G = (V,E) if
bii 6= 0 and bij = 0 if ij /∈ E

3Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]
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Haemers bound

Theorem (Haemers bound, 1979)

Θ(G) ≤ R(G) = min
B

rankB

where B fits G, i.e., bii 6= 0 and bij = 0 if ij /∈ E

Proof
Let S be a maximal independent set in G. If B fits G, then
Bij = 0 for all i 6= j ∈ S while the diagonal entries are non-zero.
Hence, B has full rank on a subspace of dimension |S| and thus
rank(B) ≥ |S| = α(G). As this is true for any B that fits G, we
get R(B) ≥ α(G).
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Bij = 0 for all i 6= j ∈ S while the diagonal entries are non-zero.
Hence, B has full rank on a subspace of dimension |S| and thus
rank(B) ≥ |S| = α(G). As this is true for any B that fits G, we
get R(B) ≥ α(G).

If B1 fits G1 and B2 fits G2 then B1 ⊗B2 fits G1 �G2, and
rank(B1 ⊗B2) = rank(B1) rank(B2). A non-product matrix can
give only a better value so R(G1 �G2) ≤ R(G1)R(G2).
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Symplectic graphs sp(2n,F2)

Definition
Symplectic graph sp(2n,F2) is the orthogonality graph (with
respect to the symplectic inner product) of vectors in F2n

2

Theorem (Peeters, 96)

Θ(sp(2n,F2)) = 2n+ 1

Proof

(≥) by explicitly constructing an independent set of size 2n+ 1

(≤) by finding a (2n+ 1)-dimensional orthonormal representation
over F2 and using Haemers bound
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Entanglement-assisted capacity of sp(2n,F2)

Theorem (CLMW, 2009)

If G has an orthonormal representation in Cd and its vertices can
be partitioned into k disjoint cliques of size d then ΘE(G) = k

Fact
Vertices of sp(2n,F2) can be partitioned into 2n + 1 cliques each
of size 2n − 1 (known as symplectic spread)

The missing piece

The only thing we need now is a low-dimensional orthonormal
representation of sp(2n,F2) over C. . .

The great coincidence. . .

It turns out that sp(6,F2) is the orthogonality graph of the root
system of the exceptional Lie algebra E7!
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E7
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Conclusions

So now we know that

Θ(E7) = 7 but ΘE(E7) = 9

thus entanglement can increase the asymptotic rate of zero-error
classical communication over a classical channel

What did I learn from this?

I Be curious
I Work on things you’re excited about

I even if you don’t see any obvious applications for it. . .
I and neither do your supervisors. . .

I Talk to other people in your field (and related fields)

I Collaborate!

I Sometimes you just need luck. . .
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Thank you for your attention!
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