An exceptionally beautiful way to communicate over a classical channel

Maris Ozols
University of Waterloo, Institute for Quantum Computing
Joint work with
Debbie Leung, Laura Mancinska, William Matthews, Aidan Roy arXiv:1009.1195

Classical stuff. . .

Classical channels

Classical channels

Conditional probability distribution

- $\mathcal{N}(x \mid y)=\operatorname{Pr}$ (output $y \mid$ input $x)$ completely characterizes \mathcal{N}

Classical channels

Conditional probability distribution

- $\mathcal{N}(x \mid y)=\operatorname{Pr}$ (output $y \mid$ input $x)$ completely characterizes \mathcal{N}
- $\mathcal{N} \otimes \mathcal{M}$ corresponds to one parallel use of \mathcal{N} and \mathcal{M}

$$
\begin{aligned}
& \text { Output y } \\
& x=y=\{0,1,2,3,4\}
\end{aligned}
$$

Confusability graph

- Inputs $x, x^{\prime} \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y \mid x)>0$ and $\mathcal{N}\left(y \mid x^{\prime}\right)>0$

Confusability graph

- Inputs $x, x^{\prime} \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y \mid x)>0$ and $\mathcal{N}\left(y \mid x^{\prime}\right)>0$

\[

\]

Confusability graph

- Inputs $x, x^{\prime} \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y \mid x)>0$ and $\mathcal{N}\left(y \mid x^{\prime}\right)>0$
- $G_{\mathcal{N}}=(X, E)$, the confusability graph of \mathcal{N}, has edges $E=\left\{x x^{\prime} \in X \times X \mid x\right.$ and x^{\prime} are confusable $\}$

Confusability graph

- Inputs $x, x^{\prime} \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y \mid x)>0$ and $\mathcal{N}\left(y \mid x^{\prime}\right)>0$
- $G_{\mathcal{N}}=(X, E)$, the confusability graph of \mathcal{N}, has edges $E=\left\{x x^{\prime} \in X \times X \mid x\right.$ and x^{\prime} are confusable $\}$

Output y

		0	1	2	3	4
	0	$1 / 2$	$1 / 2$			
H	1	$2 / 3$	$1 / 3$			
\sum_{5}	2		$1 / 5$	$4 / 5$		
	3			$3 / 5$	$2 / 5$	
	4	$3 / 4$			$1 / 4$	

$$
X=Y=\{0,1,2,3,4\}
$$

Confusability graph

- Inputs $x, x^{\prime} \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y \mid x)>0$ and $\mathcal{N}\left(y \mid x^{\prime}\right)>0$
- $G_{\mathcal{N}}=(X, E)$, the confusability graph of \mathcal{N}, has edges $E=\left\{x x^{\prime} \in X \times X \mid x\right.$ and x^{\prime} are confusable $\}$
- Strong graph product: $G_{\mathcal{N}_{1} \otimes \mathcal{N}_{2}}=G_{\mathcal{N}_{1}} \boxtimes G_{\mathcal{N}_{2}}$

Output y

		0	1	2	3	4
	0	$1 / 2$	$1 / 2$			
H	1	$2 / 3$	$1 / 3$			
\sum_{5}	2		$1 / 5$	$4 / 5$		
	3			$3 / 5$	$2 / 5$	
	4	$3 / 4$			$1 / 4$	

$$
X=Y=\{0,1,2,3,4\}
$$

Confusability graph

- Inputs $x, x^{\prime} \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y \mid x)>0$ and $\mathcal{N}\left(y \mid x^{\prime}\right)>0$
- $G_{\mathcal{N}}=(X, E)$, the confusability graph of \mathcal{N}, has edges $E=\left\{x x^{\prime} \in X \times X \mid x\right.$ and x^{\prime} are confusable $\}$
- Strong graph product: $G_{\mathcal{N}_{1} \otimes \mathcal{N}_{2}}=G_{\mathcal{N}_{1}} \boxtimes G_{\mathcal{N}_{2}}$

Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}

Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}
- Depends only on $G_{\mathcal{N}}$

Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}
- Depends only on $G_{\mathcal{N}}$

Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}
- Depends only on $G_{\mathcal{N}}$

Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}
- Depends only on $G_{\mathcal{N}}$

Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}
- Depends only on $G_{\mathcal{N}}$

$$
M\left(C_{5}\right)=2
$$

Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}
- Depends only on $G_{\mathcal{N}}$
- $M(\mathcal{N})=\alpha\left(G_{\mathcal{N}}\right)$, the independence number of $G_{\mathcal{N}}$

$$
M\left(C_{5}\right)=2
$$

Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}
- Depends only on $G_{\mathcal{N}}$
- $M(\mathcal{N})=\alpha\left(G_{\mathcal{N}}\right)$, the independence number of $G_{\mathcal{N}}$
- NP-hard to compute

$$
M\left(C_{5}\right)=2
$$

Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$
\Theta(\mathcal{N})=\lim _{n \rightarrow \infty} \sqrt[n]{M\left(\mathcal{N}^{\otimes n}\right)}
$$

Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$
\Theta(\mathcal{N})=\lim _{n \rightarrow \infty} \sqrt[n]{M\left(\mathcal{N}^{\otimes n}\right)}
$$

where $M\left(\mathcal{N}^{\otimes n}\right)=\alpha\left(G_{\mathcal{N} \otimes n}\right)=\alpha\left(G_{\mathcal{N}}^{\boxtimes n}\right)$

Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$
\Theta(\mathcal{N})=\lim _{n \rightarrow \infty} \sqrt[n]{M\left(\mathcal{N}^{\otimes n}\right)}
$$

where $M\left(\mathcal{N}^{\otimes n}\right)=\alpha\left(G_{\mathcal{N} \otimes n}\right)=\alpha\left(G_{\mathcal{N}}^{\boxtimes n}\right)$

- Not known to be decidable

Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$
\Theta(\mathcal{N})=\lim _{n \rightarrow \infty} \sqrt[n]{M\left(\mathcal{N}^{\otimes n}\right)}
$$

where $M\left(\mathcal{N}^{\otimes n}\right)=\alpha\left(G_{\mathcal{N} \otimes n}\right)=\alpha\left(G_{\mathcal{N}}^{\otimes n}\right)$

- Not known to be decidable

Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$
\Theta(\mathcal{N})=\lim _{n \rightarrow \infty} \sqrt[n]{M\left(\mathcal{N}^{\otimes n}\right)}
$$

where $M\left(\mathcal{N}^{\otimes n}\right)=\alpha\left(G_{\mathcal{N} \otimes n}\right)=\alpha\left(G_{\mathcal{N}}^{\boxtimes n}\right)$

- Not known to be decidable

Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$
\Theta(\mathcal{N})=\lim _{n \rightarrow \infty} \sqrt[n]{M\left(\mathcal{N}^{\otimes n}\right)}
$$

where $M\left(\mathcal{N}^{\otimes n}\right)=\alpha\left(G_{\mathcal{N} \otimes n}\right)=\alpha\left(G_{\mathcal{N}}^{\boxtimes n}\right)$

- Not known to be decidable

Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$
\Theta(\mathcal{N})=\lim _{n \rightarrow \infty} \sqrt[n]{M\left(\mathcal{N}^{\otimes n}\right)}
$$

where $M\left(\mathcal{N}^{\otimes n}\right)=\alpha\left(G_{\mathcal{N} \otimes n}\right)=\alpha\left(G_{\mathcal{N}}^{\boxtimes n}\right)$

- Not known to be decidable

An upper bound

Orthogonal representation of a graph
Let $G=(V, E)$ be a graph. Vectors $R=\left\{r_{i} \in \mathbb{R}^{d}: i \in V\right\}$ form an orthonormal representation of G if

$$
r_{i}^{\top} \cdot r_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i j \in E\end{cases}
$$

An upper bound

Orthogonal representation of a graph
Let $G=(V, E)$ be a graph. Vectors $R=\left\{r_{i} \in \mathbb{R}^{d}: i \in V\right\}$ form an orthonormal representation of G if

$$
r_{i}^{\top} \cdot r_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i j \in E\end{cases}
$$

Lovász theta

$$
\vartheta(G)=\max _{h, R} \sum_{i}\left(h^{\top} \cdot r_{i}\right)^{2}
$$

An upper bound

Orthogonal representation of a graph
Let $G=(V, E)$ be a graph. Vectors $R=\left\{r_{i} \in \mathbb{R}^{d}: i \in V\right\}$ form an orthonormal representation of G if

$$
r_{i}^{\mathrm{T}} \cdot r_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i j \in E\end{cases}
$$

Lovász theta

$$
\vartheta(G)=\max _{h, R} \sum_{i}\left(h^{\top} \cdot r_{i}\right)^{2}
$$

Theorem (Lovász, 1979)

$$
\Theta(G) \leq \vartheta(G)
$$

Example (pentagon)

An optimal solution for C_{5} looks like this:

where $h=(1,0,0)$ and $\cos \theta=\frac{1}{\sqrt[4]{5}}, \varphi_{k}=\frac{2 \pi k}{5}$

$$
\vartheta\left(C_{5}\right)=\sum_{k=0}^{4}\left(h^{\top} \cdot r_{k}\right)^{2}=5\left(\frac{1}{\sqrt[4]{5}}\right)^{2}=\sqrt{5}
$$

Example (pentagon)

An optimal solution for C_{5} looks like this:

$$
r_{k}=\left(\begin{array}{c}
\cos \theta \\
\sin \theta \cos \varphi_{k} \\
\sin \theta \sin \varphi_{k}
\end{array}\right)
$$

where $h=(1,0,0)$ and $\cos \theta=\frac{1}{\sqrt[4]{5}}, \varphi_{k}=\frac{2 \pi k}{5}$

$$
\vartheta\left(C_{5}\right)=\sum_{k=0}^{4}\left(h^{\top} \cdot r_{k}\right)^{2}=5\left(\frac{1}{\sqrt[4]{5}}\right)^{2}=\sqrt{5}
$$

We conclude that $\Theta\left(C_{5}\right)=\sqrt{5}$

Summary so far. . .

In the context of zero-error communication we don't care about \mathcal{N}, but only about the confusability graph $G_{\mathcal{N}}$

Definitions

$$
\begin{aligned}
M(G) & =\alpha(G) \\
\Theta(G) & =\lim _{n \rightarrow \infty} \sqrt[n]{\alpha\left(G^{\boxtimes n}\right)} \\
\vartheta(G) & =\ldots(\text { not so important }) \ldots
\end{aligned}
$$

Relations

$$
M(G) \leq \Theta(G) \leq \vartheta(G)
$$

Quantum stuff...

Classical channels assisted by entanglement

Single-use and asymptotic capacity

- $M_{E}(\mathcal{N})$ is the number of different messages that can be sent with zero error by a single use of \mathcal{N} and entanglement
- The entanglement-assisted zero-error capacity of \mathcal{N} is

$$
\Theta_{E}(\mathcal{N})=\lim _{n \rightarrow \infty} \sqrt[n]{M_{E}\left(\mathcal{N}^{\otimes n}\right)}
$$

Entanglement-assisted capacity

Properties

- $M_{E}(\mathcal{N})$ and $\Theta_{E}(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
${ }^{1}$ Beigi [arXiv:1002.2488]
${ }^{2}$ Duan, Severini, Winter [arXiv:1002.2514]

Entanglement-assisted capacity

Properties

- $M_{E}(\mathcal{N})$ and $\Theta_{E}(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_{E}(G) \geq M(G)$ and $\Theta_{E}(G) \geq \Theta(G)$
${ }^{1}$ Beigi [arXiv:1002.2488]
${ }^{2}$ Duan, Severini, Winter [arXiv:1002.2514]

Entanglement-assisted capacity

Properties

- $M_{E}(\mathcal{N})$ and $\Theta_{E}(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_{E}(G) \geq M(G)$ and $\Theta_{E}(G) \geq \Theta(G)$
- No algorithm known for computing $M_{E}(G)$ or $\Theta_{E}(G)$

[^0]
Entanglement-assisted capacity

Properties

- $M_{E}(\mathcal{N})$ and $\Theta_{E}(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_{E}(G) \geq M(G)$ and $\Theta_{E}(G) \geq \Theta(G)$
- No algorithm known for computing $M_{E}(G)$ or $\Theta_{E}(G)$

Theorem (B^{1}-DSW ${ }^{2}$, 2010)

$$
\Theta_{E}(G) \leq \vartheta(G)
$$

${ }^{1}$ Beigi [arXiv:1002.2488]
${ }^{2}$ Duan, Severini, Winter [arXiv:1002.2514]

Entanglement-assisted capacity

Properties

- $M_{E}(\mathcal{N})$ and $\Theta_{E}(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_{E}(G) \geq M(G)$ and $\Theta_{E}(G) \geq \Theta(G)$
- No algorithm known for computing $M_{E}(G)$ or $\Theta_{E}(G)$

Theorem (B^{1}-DSW ${ }^{2}$, 2010)

$$
\Theta_{E}(G) \leq \vartheta(G)
$$

Problem
Does there exist a graph G such that $\Theta_{E}(G)>\Theta(G)$?

[^1]
Entanglement-assisted capacity

Properties

- $M_{E}(\mathcal{N})$ and $\Theta_{E}(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_{E}(G) \geq M(G)$ and $\Theta_{E}(G) \geq \Theta(G)$
- No algorithm known for computing $M_{E}(G)$ or $\Theta_{E}(G)$

Theorem ($\mathrm{B}^{1}-\mathrm{DSW}^{2}$, 2010)

$$
\Theta_{E}(G) \leq \vartheta(G)
$$

Problem
Does there exist a graph G such that $\Theta_{E}(G)>\Theta(G)$?

- We need a quantum protocol to lower bound $\Theta_{E}(G)$
- Lovász bound is not good enough to upper bound $\Theta(G)$
${ }^{1}$ Beigi [arXiv:1002.2488]
${ }^{2}$ Duan, Severini, Winter [arXiv:1002.2514]

Lower bound on Θ_{E} and upper bound on Θ

Theorem (CLMW ${ }^{3}$, 2009)
If G has an orthonormal representation in \mathbb{C}^{d} and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_{E}(G)=k$
${ }^{3}$ Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]

Lower bound on Θ_{E} and upper bound on Θ

Theorem (CLMW ${ }^{3}$, 2009)
If G has an orthonormal representation in \mathbb{C}^{d} and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_{E}(G)=k$

Theorem (Haemers bound, 1979)

$$
\Theta(G) \leq R(G)=\min _{B} \operatorname{rank} B
$$

where minimization is over all matrices B that fit G
${ }^{3}$ Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]

Lower bound on Θ_{E} and upper bound on Θ

Theorem (CLMW ${ }^{3}$, 2009)
If G has an orthonormal representation in \mathbb{C}^{d} and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_{E}(G)=k$

Theorem (Haemers bound, 1979)

$$
\Theta(G) \leq R(G)=\min _{B} \operatorname{rank} B
$$

where minimization is over all matrices B that fit G
Definition
An $|V| \times|V|$ matrix B (over any field) fits graph $G=(V, E)$ if $b_{i i} \neq 0$ and $b_{i j}=0$ if $i j \notin E$

[^2]
Haemers bound

Theorem (Haemers bound, 1979)

$$
\Theta(G) \leq R(G)=\min _{B} \operatorname{rank} B
$$

where B fits G, i.e., $b_{i i} \neq 0$ and $b_{i j}=0$ if $i j \notin E$
Proof
Let S be a maximal independent set in G. If B fits G, then $B_{i j}=0$ for all $i \neq j \in S$ while the diagonal entries are non-zero. Hence, B has full rank on a subspace of dimension $|S|$ and thus $\operatorname{rank}(B) \geq|S|=\alpha(G)$. As this is true for any B that fits G, we get $R(B) \geq \alpha(G)$.

Haemers bound

Theorem (Haemers bound, 1979)

$$
\Theta(G) \leq R(G)=\min _{B} \operatorname{rank} B
$$

where B fits G, i.e., $b_{i i} \neq 0$ and $b_{i j}=0$ if $i j \notin E$
Proof
Let S be a maximal independent set in G. If B fits G, then $B_{i j}=0$ for all $i \neq j \in S$ while the diagonal entries are non-zero. Hence, B has full rank on a subspace of dimension $|S|$ and thus $\operatorname{rank}(B) \geq|S|=\alpha(G)$. As this is true for any B that fits G, we get $R(B) \geq \alpha(G)$.

If B_{1} fits G_{1} and B_{2} fits G_{2} then $B_{1} \otimes B_{2}$ fits $G_{1} \boxtimes G_{2}$, and $\operatorname{rank}\left(B_{1} \otimes B_{2}\right)=\operatorname{rank}\left(B_{1}\right) \operatorname{rank}\left(B_{2}\right)$. A non-product matrix can give only a better value so $R\left(G_{1} \boxtimes G_{2}\right) \leq R\left(G_{1}\right) R\left(G_{2}\right)$.

Symplectic graphs $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$

Definition

Symplectic graph $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$ is the orthogonality graph (with respect to the symplectic inner product) of vectors in $\mathbb{F}_{2}^{2 n}$

Symplectic graphs $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$

Definition
Symplectic graph $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$ is the orthogonality graph (with respect to the symplectic inner product) of vectors in $\mathbb{F}_{2}^{2 n}$

Theorem (Peeters, 96)
$\Theta\left(\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)\right)=2 n+1$

Symplectic graphs $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$

Definition

Symplectic graph $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$ is the orthogonality graph (with respect to the symplectic inner product) of vectors in $\mathbb{F}_{2}^{2 n}$

Theorem (Peeters, 96)
$\Theta\left(\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)\right)=2 n+1$
Proof
(\geq) by explicitly constructing an independent set of size $2 n+1$
(\leq) by finding a $(2 n+1)$-dimensional orthonormal representation over \mathbb{F}_{2} and using Haemers bound

Entanglement-assisted capacity of $\mathrm{sp}\left(2 n, \mathbb{F}_{2}\right)$

Theorem (CLMW, 2009)
If G has an orthonormal representation in \mathbb{C}^{d} and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_{E}(G)=k$

Entanglement-assisted capacity of $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$

Theorem (CLMW, 2009)
If G has an orthonormal representation in \mathbb{C}^{d} and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_{E}(G)=k$

Fact
Vertices of $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$ can be partitioned into $2^{n}+1$ cliques each of size $2^{n}-1$ (known as symplectic spread)

Entanglement-assisted capacity of $\mathrm{sp}\left(2 n, \mathbb{F}_{2}\right)$

Theorem (CLMW, 2009)
If G has an orthonormal representation in \mathbb{C}^{d} and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_{E}(G)=k$

Fact
Vertices of $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$ can be partitioned into $2^{n}+1$ cliques each of size $2^{n}-1$ (known as symplectic spread)

The missing piece
The only thing we need now is a low-dimensional orthonormal representation of $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$ over $\mathbb{C} \ldots$

Entanglement-assisted capacity of $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$

Theorem (CLMW, 2009)

If G has an orthonormal representation in \mathbb{C}^{d} and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_{E}(G)=k$

Fact
Vertices of $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$ can be partitioned into $2^{n}+1$ cliques each of size $2^{n}-1$ (known as symplectic spread)

The missing piece
The only thing we need now is a low-dimensional orthonormal representation of $\operatorname{sp}\left(2 n, \mathbb{F}_{2}\right)$ over $\mathbb{C} \ldots$

The great coincidence...
It turns out that $\operatorname{sp}\left(6, \mathbb{F}_{2}\right)$ is the orthogonality graph of the root system of the exceptional Lie algebra E_{7} !

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you're excited about

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you're excited about
- even if you don't see any obvious applications for it. . .

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you're excited about
- even if you don't see any obvious applications for it. . .
- and neither do your supervisors...

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you're excited about
- even if you don't see any obvious applications for it. . .
- and neither do your supervisors...
- Talk to other people in your field (and related fields)

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you're excited about
- even if you don't see any obvious applications for it. . .
- and neither do your supervisors...
- Talk to other people in your field (and related fields)
- Collaborate!

Conclusions

So now we know that

$$
\Theta\left(E_{7}\right)=7 \quad \text { but } \quad \Theta_{E}\left(E_{7}\right)=9
$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you're excited about
- even if you don't see any obvious applications for it. . .
- and neither do your supervisors...
- Talk to other people in your field (and related fields)
- Collaborate!
- Sometimes you just need luck...

Thank you for your attention!

[^0]: ${ }^{1}$ Beigi [arXiv:1002.2488]
 ${ }^{2}$ Duan, Severini, Winter [arXiv:1002.2514]

[^1]: ${ }^{1}$ Beigi [arXiv:1002.2488]
 ${ }^{2}$ Duan, Severini, Winter [arXiv:1002.2514]

[^2]: ${ }^{3}$ Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]

