An exceptionally beautiful way to communicate over a classical channel

Maris Ozols

University of Waterloo,
Institute for Quantum Computing

Joint work with
Debbie Leung, Laura Mancinska, William Matthews, Aidan Roy
arXiv:1009.1195
Classical stuff...
Classical channels

\[
x \in X \quad \xrightarrow{N} \quad y \in Y
\]
Classical channels

Alice \(x \in X \) \(\xrightarrow{\mathcal{N}} \) Bob \(y \in Y \)

Conditional probability distribution

- \(\mathcal{N}(x|y) = \Pr(\text{output } y \mid \text{input } x) \) completely characterizes \(\mathcal{N} \)

<table>
<thead>
<tr>
<th>Input (x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(\frac{2}{3})</td>
<td>(\frac{1}{3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>(\frac{1}{5})</td>
<td>(\frac{4}{5})</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>(\frac{3}{5})</td>
<td>(\frac{2}{5})</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\frac{3}{4})</td>
</tr>
</tbody>
</table>

\[X = Y = \{0, 1, 2, 3, 4\} \]
Classical channels

Alice $x \in X \rightarrow N \rightarrow y \in Y$ Bob

Conditional probability distribution

- $N(x|y) = \Pr(\text{output } y \mid \text{input } x)$ completely characterizes N
- $N \otimes M$ corresponds to one parallel use of N and M

<table>
<thead>
<tr>
<th>Input x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{1}{3}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{4}{5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$\frac{3}{5}$</td>
<td>$\frac{2}{5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{1}{4}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$X = Y = \{0, 1, 2, 3, 4\}$

$N \otimes M = \begin{pmatrix}
N_{11}M & N_{12}M & \cdots \\
N_{21}M & N_{22}M & \cdots \\
\vdots & \vdots & \ddots
\end{pmatrix}$
Confusability graph

- Inputs $x, x' \in X$ are **confusible** if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$

\[
\begin{array}{c|cccc}
\text{Input } x & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & \frac{1}{2} & \frac{1}{2} & & & \\
1 & & 2/3 & \frac{1}{3} & & \\
2 & & & 1/5 & \frac{4}{5} & \\
3 & & & & 3/5 & 2/5 \\
4 & & & & \frac{3}{4} & \frac{1}{4} \\
\end{array}
\]

$X = Y = \{0, 1, 2, 3, 4\}$
Confusability graph

- Inputs $x, x' \in X$ are confusible if $\exists y \in Y$ such that $N(y|x) > 0$ and $N(y|x') > 0$.

$X = Y = \{0, 1, 2, 3, 4\}$
Confusability graph

- Inputs \(x, x' \in X \) are confusablc if \(\exists y \in Y \) such that \(\mathcal{N}(y|x) > 0 \) and \(\mathcal{N}(y|x') > 0 \)

- \(G_{\mathcal{N}} = (X, E) \), the confusability graph of \(\mathcal{N} \), has edges
 \[E = \{xx' \in X \times X \mid x \text{ and } x' \text{ are confusable} \} \]

\[X = Y = \{0, 1, 2, 3, 4\} \]
Confusability graph

- Inputs $x, x' \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$

- $G_{\mathcal{N}} = (X, E)$, the confusability graph of \mathcal{N}, has edges $E = \{(xx' \in X \times X \mid x \text{ and } x' \text{ are confusable}\}$

\[
\begin{array}{c|cccc}
\text{Input } x & 0 & 1 & 2 & 3 \\
\hline
0 & 1/2 & 1/2 & & \\
1 & & 2/3 & 1/3 & \\
2 & & & 1/5 & 4/5 \\
3 & & & & 3/5 & 2/5 \\
4 & & & & & 1/4 \\
\end{array}
\]

$X = Y = \{0, 1, 2, 3, 4\}$
Confusability graph

- Inputs $x, x' \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$

- $G_{\mathcal{N}} = (X, E)$, the confusability graph of \mathcal{N}, has edges $E = \{xx' \in X \times X \mid x \text{ and } x' \text{ are confusable}\}$

- Strong graph product: $G_{\mathcal{N}_1 \otimes \mathcal{N}_2} = G_{\mathcal{N}_1} \boxtimes G_{\mathcal{N}_2}$

\[X = Y = \{0, 1, 2, 3, 4\} \]
Confusability graph

- **Inputs** $x, x' \in X$ are **confusable** if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$

- $G_{\mathcal{N}} = (X, E)$, the **confusability graph** of \mathcal{N}, has edges $E = \{xx' \in X \times X \mid x \text{ and } x' \text{ are confusable}\}$

- **Strong graph product:** $G_{\mathcal{N}_1 \otimes \mathcal{N}_2} = G_{\mathcal{N}_1} \boxtimes G_{\mathcal{N}_2}$
Zero-error capacity

Single-use capacity

Let $M(N)$ be the number of different messages that can be sent with zero error by a single use of N.

$M(N) = \alpha(G_N)$, the independence number of G_N is NP-hard to compute.

$M(C_5) = 2^5$
Zero-error capacity

Single-use capacity

- Let $M(N)$ be the number of different messages that can be sent with zero error by a single use of N
- Depends only on G_N
Zero-error capacity

Single-use capacity

- Let $M(N)$ be the number of different messages that can be sent with zero error by a single use of N
- Depends only on G_N

$M(C_5) = 2^5$
Zero-error capacity

Single-use capacity

Let $M(N)$ be the number of different messages that can be sent with zero error by a single use of N.

Depends only on G_N.
Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}
- Depends only on $G_{\mathcal{N}}$
Zero-error capacity

Single-use capacity

- Let $M(N)$ be the number of different messages that can be sent with zero error by a single use of N
- Depends only on G_N

$M(C_5) = 2$
Zero-error capacity

Single-use capacity

- Let $M(\mathcal{N})$ be the number of different messages that can be sent with zero error by a single use of \mathcal{N}
- Depends only on $G_\mathcal{N}$
- $M(\mathcal{N}) = \alpha(G_\mathcal{N})$, the independence number of $G_\mathcal{N}$

$M(C_5) = 2$
Zero-error capacity

Single-use capacity

- Let $M(N)$ be the number of different messages that can be sent with zero error by a single use of N
- Depends only on G_N
- $M(N) = \alpha(G_N)$, the independence number of G_N
- NP-hard to compute

\[
M(C_5) = 2
\]
Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} n \sqrt{M(\mathcal{N} \otimes n)}$$
Zero-error capacity

Asymptotic capacity (Shannon, 1956)

The zero-error capacity of \mathcal{N} is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M(\mathcal{N}^\otimes n)}$$

where $M(\mathcal{N}^\otimes n) = \alpha(G_{\mathcal{N}^\otimes n}) = \alpha(G_{\mathcal{N}^\boxtimes n})$
Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} n^{\sqrt{n}} M(\mathcal{N} \otimes n)$$

where $M(\mathcal{N} \otimes n) = \alpha(G_{\mathcal{N} \otimes n}) = \alpha(G_{\mathcal{N}^n})$

- Not known to be decidable
Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} \frac{n}{\sqrt{M(\mathcal{N}^\otimes n)}}$$

where $M(\mathcal{N}^\otimes n) = \alpha(G_{\mathcal{N}^\otimes n}) = \alpha(G_{\mathcal{N}^\boxtimes n})$

- Not known to be decidable
Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} n \sqrt{M(\mathcal{N}^{\otimes n})}$$

where $M(\mathcal{N}^{\otimes n}) = \alpha(G_{\mathcal{N}^{\otimes n}}) = \alpha(G_{\mathcal{N}}^{\otimes n})$

- Not known to be decidable
Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} n^{\sqrt{M(\mathcal{N}^\otimes n)}}$$

where $M(\mathcal{N}^\otimes n) = \alpha(G_{\mathcal{N}^\otimes n}) = \alpha(G_{\mathcal{N}^\boxtimes n})$

- Not known to be decidable
Zero-error capacity

Asymptotic capacity (Shannon, 1956)

- The zero-error capacity of \mathcal{N} is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} n \sqrt{M(\mathcal{N}^\otimes n)}$$

where $M(\mathcal{N}^\otimes n) = \alpha(G_{\mathcal{N}^\otimes n}) = \alpha(G_{\mathcal{N}^\otimes n})$

- Not known to be decidable

$$\Theta(C_5) \geq \sqrt{5} \approx 2.236 > M(C_5) = 2$$
An upper bound

Orthogonal representation of a graph

Let $G = (V, E)$ be a graph. Vectors $R = \{ r_i \in \mathbb{R}^d : i \in V \}$ form an orthonormal representation of G if

$$r_i^T \cdot r_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } ij \in E \end{cases}$$
An upper bound

Orthogonal representation of a graph

Let $G = (V, E)$ be a graph. Vectors $R = \{r_i \in \mathbb{R}^d : i \in V\}$ form an orthonormal representation of G if

$$r_i^T \cdot r_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } ij \in E \end{cases}$$

Lovász theta

$$\vartheta(G) = \max_{h, R} \sum_i (h^T \cdot r_i)^2$$
An upper bound

Orthogonal representation of a graph

Let $G = (V, E)$ be a graph. Vectors $R = \{r_i \in \mathbb{R}^d : i \in V\}$ form an orthonormal representation of G if

$$r_i^T \cdot r_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } ij \in E \end{cases}$$

Lovász theta

$$\vartheta(G) = \max_{h, R} \sum_i (h^T \cdot r_i)^2$$

Theorem (Lovász, 1979)

$$\Theta(G) \leq \vartheta(G)$$
Example (pentagon)

An optimal solution for \(C_5 \) looks like this:

\[
\begin{align*}
\mathbf{r}_k &= \begin{pmatrix}
\cos \theta \\
\sin \theta \cos \varphi_k \\
\sin \theta \sin \varphi_k
\end{pmatrix} \\
\end{align*}
\]

where \(\mathbf{h} = (1, 0, 0) \) and \(\cos \theta = \frac{1}{\sqrt{5}} \), \(\varphi_k = \frac{2\pi k}{5} \)

\[
\vartheta(C_5) = \sum_{k=0}^{4} (\mathbf{h}^T \cdot \mathbf{r}_k)^2 = 5 \left(\frac{1}{4\sqrt{5}} \right)^2 = \sqrt{5}
\]
Example (pentagon)

An optimal solution for C_5 looks like this:

$$r_k = \begin{pmatrix} \cos \theta \\ \sin \theta \cos \varphi_k \\ \sin \theta \sin \varphi_k \end{pmatrix}$$

where $h = (1, 0, 0)$ and $\cos \theta = \frac{1}{\sqrt{5}}$, $\varphi_k = \frac{2\pi k}{5}$

$$\vartheta(C_5) = \sum_{k=0}^{4} (h^T \cdot r_k)^2 = 5 \left(\frac{1}{\sqrt{5}} \right)^2 = \sqrt{5}$$

We conclude that $\Theta(C_5) = \sqrt{5}$
Summary so far...

In the context of zero-error communication we don’t care about N, but only about the confusability graph G_N

Definitions

$$M(G) = \alpha(G)$$

$$\Theta(G) = \lim_{n \to \infty} \sqrt[n]{\alpha(G^{\otimes n})}$$

$$\vartheta(G) = \ldots \text{(not so important)} \ldots$$

Relations

$$M(G) \leq \Theta(G) \leq \vartheta(G)$$
Quantum stuff...
Classical channels assisted by entanglement

Single-use and asymptotic capacity

- $M_E(\mathcal{N})$ is the number of different messages that can be sent with zero error by a single use of \mathcal{N} and entanglement.
- The entanglement-assisted zero-error capacity of \mathcal{N} is

$$\Theta_E(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M_E(\mathcal{N} \otimes n)}$$
Entanglement-assisted capacity

Properties

- $M_E(\mathcal{N})$ and $\Theta_E(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$

1 Beigi [arXiv:1002.2488]
2 Duan, Severini, Winter [arXiv:1002.2514]
Entanglement-assisted capacity

Properties

- $M_E(N)$ and $\Theta_E(N)$ are completely determined by G_N
- $M_E(G) \geq M(G)$ and $\Theta_E(G) \geq \Theta(G)$

1Beigi [arXiv:1002.2488]
2Duan, Severini, Winter [arXiv:1002.2514]
Entanglement-assisted capacity

Properties

- $M_E(N)$ and $\Theta_E(N)$ are completely determined by G_N.
- $M_E(G) \geq M(G)$ and $\Theta_E(G) \geq \Theta(G)$.
- No algorithm known for computing $M_E(G)$ or $\Theta_E(G)$.

2. Duan, Severini, Winter [arXiv:1002.2514]
Entanglement-assisted capacity

Properties

- $M_E (\mathcal{N})$ and $\Theta_E (\mathcal{N})$ are completely determined by G_N
- $M_E (G) \geq M (G)$ and $\Theta_E (G) \geq \Theta (G)$
- No algorithm known for computing $M_E (G)$ or $\Theta_E (G)$

Theorem (B1-DSW2, 2010)

$$\Theta_E (G') \leq \vartheta (G')$$

1Beigi [arXiv:1002.2488]
2Duan, Severini, Winter [arXiv:1002.2514]
Entanglement-assisted capacity

Properties

- $M_E(N)$ and $\Theta_E(N)$ are completely determined by G_N
- $M_E(G) \geq M(G)$ and $\Theta_E(G) \geq \Theta(G)$
- No algorithm known for computing $M_E(G)$ or $\Theta_E(G)$

Theorem (B1-DSW2, 2010)

$$\Theta_E(G') \leq \vartheta(G')$$

Problem

Does there exist a graph G such that $\Theta_E(G) > \Theta(G)$?

1Beigi [arXiv:1002.2488]

2Duan, Severini, Winter [arXiv:1002.2514]
Entanglement-assisted capacity

Properties

- $M_E(N)$ and $\Theta_E(N)$ are completely determined by G_N
- $M_E(G) \geq M(G)$ and $\Theta_E(G) \geq \Theta(G)$
- No algorithm known for computing $M_E(G)$ or $\Theta_E(G)$

Theorem (B1-DSW2, 2010)

\[\Theta_E(G) \leq \vartheta(G) \]

Problem

Does there exist a graph G such that $\Theta_E(G) > \Theta(G)$?

- We need a quantum protocol to lower bound $\Theta_E(G)$
- Lovász bound is not good enough to upper bound $\Theta(G)$

1Beigi [arXiv:1002.2488]
2Duan, Severini, Winter [arXiv:1002.2514]
Lower bound on Θ_E and upper bound on Θ

Theorem (CLMW3, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

3Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]
Lower bound on Θ_E and upper bound on Θ

Theorem (CLMW\(^3\), 2009)
If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Theorem (Haemers bound, 1979)

$$\Theta(G) \leq R(G) = \min_B \text{ rank } B$$

where minimization is over all matrices B that fit G

\(^3\)Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]
Lower bound on Θ_E and upper bound on Θ

Theorem (CLMW3, 2009)
If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Theorem (Haemers bound, 1979)

$$\Theta(G) \leq R(G) = \min_B \text{ rank } B$$

where minimization is over all matrices B that fit G.

Definition
An $|V| \times |V|$ matrix B (over any field) fits graph $G = (V, E)$ if $b_{ii} \neq 0$ and $b_{ij} = 0$ if $ij \notin E$

3Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]
Haemers bound

Theorem (Haemers bound, 1979)

\[\Theta(G) \leq R(G) = \min_B \text{ rank } B \]

where \(B \) fits \(G \), i.e., \(b_{ii} \neq 0 \) and \(b_{ij} = 0 \) if \(i, j \notin E \)

Proof

Let \(S \) be a maximal independent set in \(G \). If \(B \) fits \(G \), then \(B_{ij} = 0 \) for all \(i \neq j \in S \) while the diagonal entries are non-zero. Hence, \(B \) has full rank on a subspace of dimension \(|S| \) and thus \(\text{rank}(B) \geq |S| = \alpha(G) \). As this is true for any \(B \) that fits \(G \), we get \(R(B) \geq \alpha(G) \).
Haemers bound

Theorem (Haemers bound, 1979)

\[\Theta(G) \leq R(G) = \min_B \text{rank } B \]

where \(B \) fits \(G \), i.e., \(b_{ii} \neq 0 \) and \(b_{ij} = 0 \) if \(ij \notin E \)

Proof

Let \(S \) be a maximal independent set in \(G \). If \(B \) fits \(G \), then \(B_{ij} = 0 \) for all \(i \neq j \in S \) while the diagonal entries are non-zero. Hence, \(B \) has full rank on a subspace of dimension \(|S| \) and thus \(\text{rank}(B) \geq |S| = \alpha(G) \). As this is true for any \(B \) that fits \(G \), we get \(R(B) \geq \alpha(G) \).

If \(B_1 \) fits \(G_1 \) and \(B_2 \) fits \(G_2 \) then \(B_1 \otimes B_2 \) fits \(G_1 \diamond G_2 \), and \(\text{rank}(B_1 \otimes B_2) = \text{rank}(B_1) \text{rank}(B_2) \). A non-product matrix can give only a better value so \(R(G_1 \diamond G_2) \leq R(G_1)R(G_2) \).
Symplectic graphs $\text{sp}(2n, \mathbb{F}_2)$

Definition

Symplectic graph $\text{sp}(2n, \mathbb{F}_2)$ is the orthogonality graph (with respect to the symplectic inner product) of vectors in \mathbb{F}_2^{2n}.
Symplectic graphs $\text{sp}(2n, \mathbb{F}_2)$

Definition

Symplectic graph $\text{sp}(2n, \mathbb{F}_2)$ is the orthogonality graph (with respect to the symplectic inner product) of vectors in \mathbb{F}_2^{2n}.

Theorem (Peeters, 96)

$\Theta(\text{sp}(2n, \mathbb{F}_2)) = 2n + 1$
Symplectic graphs $\text{sp}(2n, \mathbb{F}_2)$

Definition

Symplectic graph $\text{sp}(2n, \mathbb{F}_2)$ is the orthogonality graph (with respect to the symplectic inner product) of vectors in \mathbb{F}_2^{2n}

Theorem (Peeters, 96)

$\Theta(\text{sp}(2n, \mathbb{F}_2)) = 2n + 1$

Proof

(\geq) by explicitly constructing an independent set of size $2n + 1$

(\leq) by finding a $(2n + 1)$-dimensional orthonormal representation over \mathbb{F}_2 and using Haemers bound
Entanglement-assisted capacity of $\text{sp}(2n, \mathbb{F}_2)$

Theorem (CLMW, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$
Entanglement-assisted capacity of $\text{sp}(2n, \mathbb{F}_2)$

Theorem (CLMW, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Fact

Vertices of $\text{sp}(2n, \mathbb{F}_2)$ can be partitioned into $2^n + 1$ cliques each of size $2^n - 1$ (known as *symplectic spread*)
Entanglement-assisted capacity of $\text{sp}(2n, \mathbb{F}_2)$

Theorem (CLMW, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Fact

Vertices of $\text{sp}(2n, \mathbb{F}_2)$ can be partitioned into $2^n + 1$ cliques each of size $2^n - 1$ (known as *symplectic spread*)

The missing piece

The only thing we need now is a low-dimensional orthonormal representation of $\text{sp}(2n, \mathbb{F}_2)$ over \mathbb{C}...
Entanglement-assisted capacity of $\text{sp}(2n, \mathbb{F}_2)$

Theorem (CLMW, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Fact

Vertices of $\text{sp}(2n, \mathbb{F}_2)$ can be partitioned into $2^n + 1$ cliques each of size $2^n - 1$ (known as *symplectic spread*).

The missing piece

The only thing we need now is a low-dimensional orthonormal representation of $\text{sp}(2n, \mathbb{F}_2)$ over \mathbb{C}

The great coincidence

It turns out that $\text{sp}(6, \mathbb{F}_2)$ is the orthogonality graph of the root system of the exceptional Lie algebra E_7!
Conclusions

So now we know that

$$\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9$$
Conclusions

So now we know that

\[\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9 \]

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel.
Conclusions

So now we know that

$$\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel.

What did I learn from this?
Conclusions

So now we know that

$$\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
Conclusions

So now we know that

$$\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

▶ Be curious
▶ Work on things you’re excited about
Conclusions

So now we know that

$$\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you’re excited about
 - even if you don’t see any obvious applications for it...
Conclusions

So now we know that

\[\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9 \]

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you’re excited about
 - even if you don’t see any obvious applications for it...
 - and neither do your supervisors...
Conclusions

So now we know that

$$\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you’re excited about
 - even if you don’t see any obvious applications for it...
 - and neither do your supervisors...
- Talk to other people in your field (and related fields)
Conclusions

So now we know that

$$\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel.

What did I learn from this?

- Be curious
- Work on things you’re excited about
 - even if you don’t see any obvious applications for it…
 - and neither do your supervisors…
- Talk to other people in your field (and related fields)
- Collaborate!
Conclusions

So now we know that

$$\Theta(E_7) = 7 \quad \text{but} \quad \Theta_E(E_7) = 9$$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

- Be curious
- Work on things you’re excited about
 - even if you don’t see any obvious applications for it…
 - and neither do your supervisors…
- Talk to other people in your field (and related fields)
- Collaborate!
- Sometimes you just need luck…
Thank you for your attention!