An exceptionally beautiful way to communicate over a classical channel

Maris Ozols

University of Waterloo, Institute for Quantum Computing

Joint work with Debbie Leung, Laura Mancinska, William Matthews, Aidan Roy arXiv:1009.1195

Classical stuff...

Classical channels

Classical channels

Alice Bob

$$x \in X \longrightarrow \mathcal{N} \longrightarrow y \in Y$$

Conditional probability distribution

• $\mathcal{N}(x|y) = \Pr(\text{output } y \mid \text{input } x) \text{ completely characterizes } \mathcal{N}$

Output y

$$0 \frac{1}{2} \frac{3}{4} \frac{4}{1}$$

H 1 2/3 1/3
F 2 1/5 4/5
H 1 2/3 1/3
X 4 3/5 2/5
X 4 3/4 1/4
X = Y = $\{0, 1, 2, 3, 4\}$

Classical channels

Alice Bob

$$x \in X \longrightarrow \mathcal{N} \longrightarrow y \in Y$$

Conditional probability distribution

- $\mathcal{N}(x|y) = \Pr(\text{output } y \mid \text{input } x) \text{ completely characterizes } \mathcal{N}$
- $\blacktriangleright \ \mathcal{N} \otimes \mathcal{M}$ corresponds to one parallel use of \mathcal{N} and \mathcal{M}

Output y

$$\begin{array}{c}
 & 0 & 1 & 2 & 3 & 4 \\
 & 0 & 1 & 2 & 3 & 4 \\
 & 0 & 1 & 2 & 3 & 4 \\
 & 1 & 2^{\prime}_{5} & 1^{\prime}_{5} \\
 & 2 & 1^{\prime}_{5} & 1^{\prime}_{5} \\
 & 1 & 2^{\prime}_{5} & 1^{\prime}_{5} \\
 & 1^{\prime}_{5} & 2^{\prime}_{5} \\
 & 1^{\prime}_{5} & 1^{\prime}_{5} & 1^{\prime}_{5} \\
 & 1^{\prime}_{5} & 1^{\prime}_{5} \\
 & 1^{$$

▶ Inputs $x, x' \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$

▶ Inputs $x, x' \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$

- ▶ Inputs $x, x' \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$
- $G_{\mathcal{N}} = (X, E)$, the confusability graph of \mathcal{N} , has edges $E = \{xx' \in X \times X \mid x \text{ and } x' \text{ are confusable}\}$

- ▶ Inputs $x, x' \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$
- $G_{\mathcal{N}} = (X, E)$, the confusability graph of \mathcal{N} , has edges $E = \{xx' \in X \times X \mid x \text{ and } x' \text{ are confusable}\}$

- ▶ Inputs $x, x' \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$
- ► G_N = (X, E), the confusability graph of N, has edges E = {xx' ∈ X × X | x and x' are confusable}
- Strong graph product: $G_{\mathcal{N}_1 \otimes \mathcal{N}_2} = G_{\mathcal{N}_1} \boxtimes G_{\mathcal{N}_2}$

- ▶ Inputs $x, x' \in X$ are confusable if $\exists y \in Y$ such that $\mathcal{N}(y|x) > 0$ and $\mathcal{N}(y|x') > 0$
- $G_{\mathcal{N}} = (X, E)$, the confusability graph of \mathcal{N} , has edges $E = \{xx' \in X \times X \mid x \text{ and } x' \text{ are confusable}\}$
- Strong graph product: $G_{\mathcal{N}_1 \otimes \mathcal{N}_2} = G_{\mathcal{N}_1} \boxtimes G_{\mathcal{N}_2}$

Single-use capacity

► Let M(N) be the number of different messages that can be sent with zero error by a single use of N

- Let M(N) be the number of different messages that can be sent with zero error by a single use of N
- Depends only on $G_{\mathcal{N}}$

- Let M(N) be the number of different messages that can be sent with zero error by a single use of N
- Depends only on $G_{\mathcal{N}}$

- Let M(N) be the number of different messages that can be sent with zero error by a single use of N
- Depends only on $G_{\mathcal{N}}$

- Let M(N) be the number of different messages that can be sent with zero error by a single use of N
- Depends only on $G_{\mathcal{N}}$

Single-use capacity

- Let M(N) be the number of different messages that can be sent with zero error by a single use of N
- Depends only on $G_{\mathcal{N}}$

 $M(C_5) = 2$

Single-use capacity

- Let M(N) be the number of different messages that can be sent with zero error by a single use of N
- Depends only on $G_{\mathcal{N}}$
- $M(\mathcal{N}) = \alpha(G_{\mathcal{N}})$, the independence number of $G_{\mathcal{N}}$

 $M(C_5) = 2$

Single-use capacity

- Let M(N) be the number of different messages that can be sent with zero error by a single use of N
- Depends only on $G_{\mathcal{N}}$
- $M(\mathcal{N}) = \alpha(G_{\mathcal{N}})$, the independence number of $G_{\mathcal{N}}$
- NP-hard to compute

 $M(C_5) = 2$

Asymptotic capacity (Shannon, 1956)

• The zero-error capacity of $\mathcal N$ is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M(\mathcal{N}^{\otimes n})}$$

Asymptotic capacity (Shannon, 1956)

• The zero-error capacity of ${\mathcal N}$ is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M(\mathcal{N}^{\otimes n})}$$

where
$$M(\mathcal{N}^{\otimes n}) = \alpha(G_{\mathcal{N}^{\otimes n}}) = \alpha(G_{\mathcal{N}}^{\boxtimes n})$$

Asymptotic capacity (Shannon, 1956)

• The zero-error capacity of ${\mathcal N}$ is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M(\mathcal{N}^{\otimes n})}$$

where
$$M(\mathcal{N}^{\otimes n}) = \alpha(G_{\mathcal{N}^{\otimes n}}) = \alpha(G_{\mathcal{N}}^{\boxtimes n})$$

Asymptotic capacity (Shannon, 1956)

• The zero-error capacity of $\mathcal N$ is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M(\mathcal{N}^{\otimes n})}$$

where
$$M(\mathcal{N}^{\otimes n}) = \alpha(G_{\mathcal{N}^{\otimes n}}) = \alpha(G_{\mathcal{N}}^{\boxtimes n})$$

Asymptotic capacity (Shannon, 1956)

• The zero-error capacity of $\mathcal N$ is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M(\mathcal{N}^{\otimes n})}$$

where
$$M(\mathcal{N}^{\otimes n}) = \alpha(G_{\mathcal{N}^{\otimes n}}) = \alpha(G_{\mathcal{N}}^{\boxtimes n})$$

Asymptotic capacity (Shannon, 1956)

• The zero-error capacity of $\mathcal N$ is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M(\mathcal{N}^{\otimes n})}$$

where
$$M(\mathcal{N}^{\otimes n}) = \alpha(G_{\mathcal{N}^{\otimes n}}) = \alpha(G_{\mathcal{N}}^{\boxtimes n})$$

Asymptotic capacity (Shannon, 1956)

• The zero-error capacity of ${\mathcal N}$ is

$$\Theta(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M(\mathcal{N}^{\otimes n})}$$

where
$$M(\mathcal{N}^{\otimes n}) = \alpha(G_{\mathcal{N}^{\otimes n}}) = \alpha(G_{\mathcal{N}}^{\boxtimes n})$$

An upper bound

Orthogonal representation of a graph

Let G=(V,E) be a graph. Vectors $R=\{r_i\in\mathbb{R}^d:i\in V\}$ form an orthonormal representation of G if

$$r_i^{\mathsf{T}} \cdot r_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } ij \in E \end{cases}$$

An upper bound

Orthogonal representation of a graph Let G = (V, E) be a graph. Vectors $R = \{r_i \in \mathbb{R}^d : i \in V\}$ form an orthonormal representation of G if

$$r_i^{\mathsf{T}} \cdot r_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } ij \in E \end{cases}$$

Lovász theta

$$\vartheta(G) = \max_{h,R} \sum_{i} (h^{\mathsf{T}} \cdot r_i)^2$$

An upper bound

Orthogonal representation of a graph Let G = (V, E) be a graph. Vectors $R = \{r_i \in \mathbb{R}^d : i \in V\}$ form an orthonormal representation of G if

$$r_i^{\mathsf{T}} \cdot r_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } ij \in E \end{cases}$$

Lovász theta

$$\vartheta(G) = \max_{h,R} \sum_{i} (h^{\mathsf{T}} \cdot r_i)^2$$

Theorem (Lovász, 1979)

 $\Theta(G) \leq \vartheta(G)$

Example (pentagon)

An optimal solution for C_5 looks like this:

where h = (1, 0, 0) and $\cos \theta = \frac{1}{\sqrt[4]{5}}$, $\varphi_k = \frac{2\pi k}{5}$

$$\vartheta(C_5) = \sum_{k=0}^{4} (h^{\mathsf{T}} \cdot r_k)^2 = 5 \left(\frac{1}{\sqrt[4]{5}}\right)^2 = \sqrt{5}$$

Example (pentagon)

An optimal solution for C_5 looks like this:

where h = (1, 0, 0) and $\cos \theta = \frac{1}{\sqrt[4]{5}}$, $\varphi_k = \frac{2\pi k}{5}$

$$\vartheta(C_5) = \sum_{k=0}^{4} (h^{\mathsf{T}} \cdot r_k)^2 = 5 \left(\frac{1}{\sqrt[4]{5}}\right)^2 = \sqrt{5}$$

We conclude that $\Theta(C_5) = \sqrt{5}$

Summary so far...

In the context of zero-error communication we don't care about ${\cal N},$ but only about the confusability graph $G_{\cal N}$

Definitions

$$M(G) = \alpha(G)$$

$$\Theta(G) = \lim_{n \to \infty} \sqrt[n]{\alpha(G^{\boxtimes n})}$$

$$\vartheta(G) = \dots \text{(not so important)}\dots$$

Relations

$$M(G) \leq \Theta(G) \leq \vartheta(G)$$

Quantum stuff...

Classical channels assisted by entanglement

Single-use and asymptotic capacity

- ► M_E(N) is the number of different messages that can be sent with zero error by a single use of N and entanglement
- The entanglement-assisted zero-error capacity of $\mathcal N$ is

$$\Theta_E(\mathcal{N}) = \lim_{n \to \infty} \sqrt[n]{M_E(\mathcal{N}^{\otimes n})}$$

Properties

• $M_E(\mathcal{N})$ and $\Theta_E(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$

¹Beigi [arXiv:1002.2488]
 ²Duan, Severini, Winter [arXiv:1002.2514]

Properties

- $M_E(\mathcal{N})$ and $\Theta_E(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_E(G) \ge M(G)$ and $\Theta_E(G) \ge \Theta(G)$

 ¹Beigi [arXiv:1002.2488]
 ²Duan, Severini, Winter [arXiv:1002.2514]

Properties

- $M_E(\mathcal{N})$ and $\Theta_E(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_E(G) \ge M(G)$ and $\Theta_E(G) \ge \Theta(G)$
- ▶ No algorithm known for computing $M_E(G)$ or $\Theta_E(G)$

 ¹Beigi [arXiv:1002.2488]
 ²Duan, Severini, Winter [arXiv:1002.2514]

Properties

- $M_E(\mathcal{N})$ and $\Theta_E(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_E(G) \ge M(G)$ and $\Theta_E(G) \ge \Theta(G)$
- ▶ No algorithm known for computing $M_E(G)$ or $\Theta_E(G)$

Theorem (B^1 -DSW², 2010)

 $\Theta_E(G) \le \vartheta(G)$

¹Beigi [arXiv:1002.2488]
 ²Duan, Severini, Winter [arXiv:1002.2514]

Properties

- $M_E(\mathcal{N})$ and $\Theta_E(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_E(G) \ge M(G)$ and $\Theta_E(G) \ge \Theta(G)$
- ▶ No algorithm known for computing $M_E(G)$ or $\Theta_E(G)$

Theorem (B^1 -DSW², 2010)

 $\Theta_E(G) \le \vartheta(G)$

Problem

Does there exist a graph G such that $\Theta_E(G) > \Theta(G)$?

²Duan, Severini, Winter [arXiv:1002.2514]

¹Beigi [arXiv:1002.2488]

Properties

- $M_E(\mathcal{N})$ and $\Theta_E(\mathcal{N})$ are completely determined by $G_{\mathcal{N}}$
- $M_E(G) \ge M(G)$ and $\Theta_E(G) \ge \Theta(G)$
- ▶ No algorithm known for computing $M_E(G)$ or $\Theta_E(G)$

Theorem (B^1 -DSW², 2010)

$$\Theta_E(G) \le \vartheta(G)$$

Problem

Does there exist a graph G such that $\Theta_E(G) > \Theta(G)$?

- We need a quantum protocol to lower bound $\Theta_E(G)$
- Lovász bound is not good enough to upper bound $\Theta(G)$

¹Beigi [arXiv:1002.2488]

²Duan, Severini, Winter [arXiv:1002.2514]

Lower bound on Θ_E and upper bound on Θ

Theorem (CLMW³, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

³Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]

Lower bound on Θ_E and upper bound on Θ

Theorem (CLMW³, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Theorem (Haemers bound, 1979)

$$\Theta(G) \le R(G) = \min_{B} \operatorname{rank} B$$

where minimization is over all matrices ${\boldsymbol B}$ that fit ${\boldsymbol G}$

³Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]

Lower bound on Θ_E and upper bound on Θ

Theorem (CLMW³, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Theorem (Haemers bound, 1979)

$$\Theta(G) \le R(G) = \min_{B} \operatorname{rank} B$$

where minimization is over all matrices ${\boldsymbol{B}}$ that fit ${\boldsymbol{G}}$

Definition

An $|V| \times |V|$ matrix B (over any field) fits graph G = (V, E) if $b_{ii} \neq 0$ and $b_{ij} = 0$ if $ij \notin E$

³Cubitt, Leung, Matthews, Winter [arXiv:0911.5300]

Haemers bound

Theorem (Haemers bound, 1979)

$$\Theta(G) \le R(G) = \min_{B} \operatorname{rank} B$$

where B fits G, i.e., $b_{ii} \neq 0$ and $b_{ij} = 0$ if $ij \notin E$

Proof

Let S be a maximal independent set in G. If B fits G, then $B_{ij} = 0$ for all $i \neq j \in S$ while the diagonal entries are non-zero. Hence, B has full rank on a subspace of dimension |S| and thus $\operatorname{rank}(B) \geq |S| = \alpha(G)$. As this is true for any B that fits G, we get $R(B) \geq \alpha(G)$.

Haemers bound

Theorem (Haemers bound, 1979)

$$\Theta(G) \le R(G) = \min_{B} \operatorname{rank} B$$

where B fits G, i.e., $b_{ii} \neq 0$ and $b_{ij} = 0$ if $ij \notin E$

Proof

Let S be a maximal independent set in G. If B fits G, then $B_{ij} = 0$ for all $i \neq j \in S$ while the diagonal entries are non-zero. Hence, B has full rank on a subspace of dimension |S| and thus $\operatorname{rank}(B) \geq |S| = \alpha(G)$. As this is true for any B that fits G, we get $R(B) \geq \alpha(G)$.

If B_1 fits G_1 and B_2 fits G_2 then $B_1 \otimes B_2$ fits $G_1 \boxtimes G_2$, and $\operatorname{rank}(B_1 \otimes B_2) = \operatorname{rank}(B_1)\operatorname{rank}(B_2)$. A non-product matrix can give only a better value so $R(G_1 \boxtimes G_2) \leq R(G_1)R(G_2)$.

Symplectic graphs $sp(2n, \mathbb{F}_2)$

Definition Symplectic graph $\operatorname{sp}(2n, \mathbb{F}_2)$ is the orthogonality graph (with respect to the symplectic inner product) of vectors in \mathbb{F}_2^{2n} Symplectic graphs $sp(2n, \mathbb{F}_2)$

Definition Symplectic graph $\operatorname{sp}(2n, \mathbb{F}_2)$ is the orthogonality graph (with respect to the symplectic inner product) of vectors in \mathbb{F}_2^{2n}

Theorem (Peeters, 96) $\Theta(\operatorname{sp}(2n, \mathbb{F}_2)) = 2n + 1$ Symplectic graphs $sp(2n, \mathbb{F}_2)$

Definition

Symplectic graph $sp(2n, \mathbb{F}_2)$ is the orthogonality graph (with respect to the symplectic inner product) of vectors in \mathbb{F}_2^{2n}

```
Theorem (Peeters, 96)
\Theta(\operatorname{sp}(2n, \mathbb{F}_2)) = 2n + 1
```

Proof

- $(\geq)\,$ by explicitly constructing an independent set of size 2n+1
- $(\leq)\;$ by finding a (2n+1)-dimensional orthonormal representation over \mathbb{F}_2 and using Haemers bound

Theorem (CLMW, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Theorem (CLMW, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Fact

Vertices of $sp(2n, \mathbb{F}_2)$ can be partitioned into $2^n + 1$ cliques each of size $2^n - 1$ (known as *symplectic spread*)

Theorem (CLMW, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Fact

Vertices of $sp(2n, \mathbb{F}_2)$ can be partitioned into $2^n + 1$ cliques each of size $2^n - 1$ (known as *symplectic spread*)

The missing piece

The only thing we need now is a low-dimensional orthonormal representation of $sp(2n, \mathbb{F}_2)$ over \mathbb{C} ...

Theorem (CLMW, 2009)

If G has an orthonormal representation in \mathbb{C}^d and its vertices can be partitioned into k disjoint cliques of size d then $\Theta_E(G) = k$

Fact

Vertices of $sp(2n, \mathbb{F}_2)$ can be partitioned into $2^n + 1$ cliques each of size $2^n - 1$ (known as *symplectic spread*)

The missing piece

The only thing we need now is a low-dimensional orthonormal representation of ${\rm sp}(2n,\mathbb{F}_2)$ over $\mathbb{C}...$

The great coincidence...

It turns out that $sp(6, \mathbb{F}_2)$ is the orthogonality graph of the root system of the exceptional Lie algebra E_7 !

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

What did I learn from this?

Be curious

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

- Be curious
- Work on things you're excited about

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

- Be curious
- Work on things you're excited about
 - even if you don't see any obvious applications for it...

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

- Be curious
- Work on things you're excited about
 - even if you don't see any obvious applications for it...
 - and neither do your supervisors...

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

- Be curious
- Work on things you're excited about
 - even if you don't see any obvious applications for it...
 - and neither do your supervisors...
- Talk to other people in your field (and related fields)

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

- Be curious
- Work on things you're excited about
 - even if you don't see any obvious applications for it...
 - and neither do your supervisors...
- Talk to other people in your field (and related fields)
- Collaborate!

So now we know that

$$\Theta(E_7) = 7$$
 but $\Theta_E(E_7) = 9$

thus entanglement can increase the asymptotic rate of zero-error classical communication over a classical channel

- Be curious
- Work on things you're excited about
 - even if you don't see any obvious applications for it...
 - and neither do your supervisors...
- Talk to other people in your field (and related fields)
- Collaborate!
- Sometimes you just need luck...

Thank you for your attention!

