Notes on Graph Theory

Maris Ozols

June 8, 2010

Contents

0.1 Berge's Lemma 2
0.2 König's Theorem 3
0.3 Hall's Theorem 4
0.4 Tutte's Theorem 5
0.5 Menger's Theorem 6
0.6 Kuratowski's Theorem 7
0.7 Five Colour Theorem 10
0.8 Brooks' Theorem 11
0.9 Hajós' Theorem 12
0.10 Vizing's Theorem 13
0.11 Turán's Theorem 14

0.1 Berge's Lemma

Lemma (Berge, 1957). A matching M in a graph G is a maximum matching if and only if G has no M-augmenting path.

Proof. Let us prove the contrapositive: G has a matching larger than M if and only if G has an M-augmenting path. Clearly, an M-augmenting path P of G can be used to produce a matching M^{\prime} that is larger than M - just take M^{\prime} to be the symmetric difference of P and M (M^{\prime} contains exactly those edges of G that appear in exactly one of P and M). Hence, the backward direction follows.

For the forward direction, let M^{\prime} be a matching in G larger than M. Consider D, the symmetric difference of M and M^{\prime}. Observe that D consists of paths and even cycles (each vertex of D has degree at most 2 and edges belonging to some path or cycle must alternate between M and M^{\prime}). Since M^{\prime} is larger than M, D contains a component that has more edges from M^{\prime} than M. Such a component is a path in G that starts and ends with an edge from M^{\prime}, so it is an M-augmenting path.

0.2 König's Theorem

Theorem (König, 1931). The maximum cardinality of a matching in a bipartite graph G is equal to the minimum cardinality of a vertex cover of its edges.
$|C| \geq|M|$

- Trivial: One needs at least $|M|$ vertices to cover all edges of M.
$|C| \leq|M|$
- Choose cover: For every edge in M choose its end in B if some alternating path ends there, and its end in A otherwise.
- Pick edge: Pick $a b \in E$. If $a b \in M$, we are done, so assume $a b \notin M$. Since M is maximal, it cannot be that both a and b are unmatched.

- Alternating path that ends in b :

- Easy case: If a is unmatched, then b is matched and $a b$ is an alternating path that ends in B, so $b \in C$.
- Hard case: If b is unmatched, then a is matched to some b^{\prime}. If $a \notin C$, then $b^{\prime} \in C$ and some alternating path P ends in b^{\prime}. If $b \in P$, let $P^{\prime}=P b$, otherwise $P^{\prime}=P b^{\prime} a b$. M is maximal, so P^{\prime} is not an augmenting path, so b must be matched and hence $b \in C$, since P^{\prime} ends at b.

0.3 Hall's Theorem

Theorem (Hall, 1935). A bipartite graph G contains a matching of A if and only if $|N(S)| \geq|S|$ for all $S \subseteq A$.
\Longrightarrow

- Trivial: If A is matched then every $S \subseteq A$ has at least $|S|$ neighbours.
\Longleftarrow
- Induction on $|A|$: Apply induction on $|A|$. Base case $|A|=1$ is trivial.
- Many neighbours: Assume $|N(S)| \geq|S|+1$ for every $S \neq \emptyset$. By induction hypothesis $G-e$ has a matching M, where $e \in E$ can be chosen arbitrarily. Then $M \cup\{e\}$ is a matching of A.
- Few neighbours: Assume $|N(S)|=|S|$ for some $S \notin\{\emptyset, A\}$.
- Cut in two pieces: Consider graphs G_{S} and $G_{A \backslash S}$ induced by $S \cup N(S)$ and $(A \backslash S) \cup(B \backslash N(S))$, respectively.
- Check marriage condition: It holds for both graphs:
* We kept all neighbours of S, so $\left|N_{G_{S}}(S)\right|=\left|N_{G}(S)\right|$.
* If $\left|N_{G_{A \backslash S}}\left(S^{\prime}\right)\right|<\left|S^{\prime}\right|$ for some $S^{\prime} \subseteq A \backslash S$, then $\left|N_{G}\left(S \cup S^{\prime}\right)\right|=\left|N_{G}(S)\right|+\left|N_{G_{A \backslash S}}\left(S^{\prime}\right)\right|<$ $|S|+\left|S^{\prime}\right|$, a contradiction.
- Put matchings together: By induction hypothesis G_{S} and $G_{A \backslash S}$ contain matchings for S and $A \backslash S$, respectively. Putting these together gives a matching of A in G.

0.4 Tutte's Theorem

Theorem (Tutte, 1947). A graph G has a 1-factor if and only if $q(G-S) \leq|S|$ for all $S \subseteq V(G)$, where $q(H)$ is the number of odd order components of H.
\Longrightarrow

- Trivial: If G has a 1-factor, then Tutte's condition is satisfied.

\Longleftarrow

- Consider an edge-maximal counterexample G : Let G be a counterexample (G satisfies Tutte's condition, but has no 1-factor). Addition of edges preserves Tutte's property, so it suffices to consider an edge-maximal counterexample G (adding any edge yields a 1 -factor).
- G has no bad set: We call $S \subseteq V$ bad if $\forall s \in S, \forall v \in V: s v \in E$ and all components of $G-S$ are complete. If S is a bad set in a graph with no 1-factor, then S or \emptyset violates Tutte's condition. Thus, G has no bad set.
- Choose S^{\prime} : Let $S^{\prime}=\{v \in V: v$ is adjacent to all other vertices $\}$. Since S^{\prime} is not $\operatorname{bad}, G-S^{\prime}$ has a component A with non-adjacent vertices a, a^{\prime}.
- Define a, b, c, d : Let $a, b, c \in A$ be the first 3 vertices on the shortest $a-a^{\prime}$ path within $A(a b, b c \in E$ but $a c \notin E)$. Moreover, since $b \notin S^{\prime}$, there exists $d \in V$ such that $b d \notin E$.
- Even cycles containing $a c$ and $b d$: G is edge-maximal without 1-factor, so let $M_{a c}$ and $M_{b d}$ be 1-factors of $G+a c$ and $G+b d$, respectively. $M_{a c} \oplus M_{b d}$ consists of disjoint even cycles, so let $C_{a c}$ and $C_{b d}$ be the cycles containing $a c$ and $b d$, respectively.
- Contradiction by constructing a 1-factor:
- If $a c \notin C_{b d}$ then $M_{b d} \oplus C_{b d}$ is a 1-factor of G.
- If $a c \in C_{b d}$ then $M_{b d} \oplus \gamma$ is a 1-factor of G, where $\gamma=b d \ldots$ is the shortest cycle whose vertices are all in $C_{b d}$ and the last edge being either $a b$ or $c b$. In particular, $a c \notin E(\gamma)$.

0.5 Menger's Theorem

Theorem (Menger, 1927). Let $G=(V, E)$ be a graph and $A, B \subseteq V$. Then the minimums number of vertices separating A from B in G is equal to the maximum number of disjoint $A-B$ paths in G.
"min separator" \geq "max \# of paths"

- Trivial: To separate A from B one must cut every $A-B$ path .
"min separator" \leq "max \# of paths"
- Induction on $|E|$: Apply induction on $|E|$. Let k be the size of a minimal $A-B$ separator. If $E=\emptyset$ then $|A \cap B|=k$ and there are k trivial paths.
- Find a separator containing an edge: $|E| \geq 1$, so G has an edge $e=x y$. First find an $A-B$ separator containing adjacent vertices.
- Contract e : If G contains less than k disjoint $A-B$ paths, then so does G / e. Let v_{e} be the vertex obtained by contracting e.
- Find a smaller separator: Let Y be a smallest $A-B$ separator in G / e. It must be the case that $|Y|$ is either $k-1$ or k :
* A minimal $A-B$ separator in G is also an $A-B$ separator in G / e, so $|Y| \leq k$.
* If $|Y| \leq k-2$ then G has an $A-B$ separator of size $k-2$ (if $v_{e} \notin Y$) or $k-1$ (if $v_{e} \in Y$), a contradiction.
If $|Y|=k$, by induction hypothesis there exist k disjoint $A-B$ paths and we are done. Thus, $|Y|=k-1$. Also, $v_{e} \in Y$ since otherwise Y would be an $A-B$ separator in G of size less than k.
- Extend the separator: $X=\left(Y \backslash\left\{v_{e}\right\}\right) \cup\{x, y\}$ is an $A-B$ separator in G of size k, containing edge $e=x y$.
- Remove the edge and apply induction hypothesis: To apply the induction hypothesis, consider $G-e$. Use X as one of the sets A, B.
- $A-X$ paths: Every $A-X$ separator in $G-e$ is also an $A-B$ separator in G and hence contains at least k vertices. By induction hypothesis there are k disjoint $A-X$ paths in $G-e$
$-X-B$ paths: Similarly.
- Combine paths: X separates A and B in G, so these two paths systems do not meet outside of X and thus can be combined into k disjoint $A-B$ paths.

0.6 Kuratowski's Theorem

Theorem (Kuratowski, 1930; Wagner, 1937). The following assertions are equivalent:

1. G is planar;
2. G contains neither K_{5} nor $K_{3,3}$ as a minor;
3. G contains neither K_{5} nor $K_{3,3}$ as a topological minor.

Kuratowski's theorem follows from these lemmas:

- Lemma $(2 \Leftrightarrow 3)$. A graph contains K_{5} or $K_{3,3}$ as a minor if and only if it contains K_{5} or $K_{3,3}$ as a topological minor.
- Lemma (3-connected case). Every 3-connected graph without a K_{5} or $K_{3,3}$ minor is planar.
- Lemma. If $|G| \geq 4$ and G is edge-maximal without K_{5} and $K_{3,3}$ as topological minors, then G is 3-connected.

Lemma $(2 \Leftrightarrow 3)$. A graph contains K_{5} or $K_{3,3}$ as a minor if and only if it contains K_{5} or $K_{3,3}$ as a topological minor.
\Longleftarrow

- Trivial: Every topological minor is also a minor.
\Longrightarrow
- Trivial for $K_{3,3}$: Every minor with maximum degree at most 3 is also a topological minor.
- Remaining part: It suffices to show that every graph G with a K_{5} minor contains K_{5} as a topological minor or $K_{3,3}$ as a minor.

Lemma (3-connected case). Every 3-connected graph without a K_{5} or $K_{3,3}$ minor is planar.

- Induction on $|V|$: Apply induction on V. If $|V|=4$ then $G=K_{4}$, which is planar.
- Contract edge $x y$: G has an edge $x y$ such that $G / x y$ is again 3-connected. Moreover, $G / x y$ has no K_{5} and no $K_{3,3}$ minor. By induction hypothesis $G / x y$ admits a plane drawing \tilde{G}.
- A partial drawing: Let f be the face of $\tilde{G}-v_{x y}$ containing $v_{x y}$. The boundary C of f is a cycle, since $\tilde{G}-v_{x y}$ is 2-connected. Let $X=N_{G}(x) \backslash\{y\}$ and $Y=N_{G}(y) \backslash\{x\}$. Let $\tilde{G}_{X}=\tilde{G}-\left\{v_{x y} v: v \in Y \backslash X\right\}$ be the drawing \tilde{G} with only those neighbours of $v_{x y}$ left that are in $X . \tilde{G}_{X}$ may be viewed as a drawing of $G-y$ in which x is represented by $v_{x y}$. We want to add y back to \tilde{G}_{X}.
- Arcs: Fix a direction of the cycle C and enumerate the vertices of $X \cap C$ as x_{0}, \ldots, x_{k-1}. Also, let $\mathcal{P}=\left\{x_{i} \ldots x_{i+1}: i \in \mathbb{Z}_{k}\right\}$ be the set of paths connecting x_{i} and x_{i+1} along C for all i.
- Arc containing Y : Let us show that $Y \subseteq V(P)$ for some $P \in \mathcal{P}$. Assume not. Since G is 3-connected, x and y each have at least two neighbours in C. By assumption, there exist distinct $P^{\prime}, P^{\prime \prime} \in \mathcal{P}$ and distinct $y^{\prime}, y^{\prime \prime} \in Y$, such that $y^{\prime} \in P^{\prime}, y^{\prime \prime} \in P^{\prime \prime}$, and $y^{\prime}, y^{\prime \prime} \notin P^{\prime} \cap P^{\prime \prime}$. We get a contradiction with planarity of G as follows:
- If $Y \nsubseteq X$ then y^{\prime} can be assumed to be an inner vertex of P^{\prime}, so the endpoints x^{\prime} and $x^{\prime \prime}$ of P^{\prime} separate y^{\prime} from $y^{\prime \prime}$ in C. These four vertices together with x and y form a subgraph that is topologically equivalent to $K_{3,3}$ (the two stable sets are $\left\{x, y^{\prime}, y^{\prime \prime}\right\}$ and $\left\{y, x^{\prime}, x^{\prime \prime}\right\}$).
- If $Y \subseteq X$ then $y^{\prime}, y^{\prime \prime} \in Y \cap X$ and we consider two cases:
* If $|Y \cap X|=2$, then y^{\prime} and $y^{\prime \prime}$ must be separated by two neighbours of x and we obtain $K_{3,3}$ as before.
* Otherwise, let $y^{\prime \prime \prime} \in(Y \cap X) \backslash\left\{y^{\prime}, y^{\prime \prime}\right\}$. Then x and y have three common neighbours on C and these together with x and y form a subgraph that is topologically equivalent to K_{5}.
- Add back vertex y : As $Y \subseteq V(P)$ where $P=x_{i} \ldots x_{i+1}$ for some $i \in \mathbb{Z}_{k}$, the drawing \tilde{G}_{X} can be extended to a plane drawing of G by putting y in the face $f_{i} \subseteq f$ of the cycle $x x_{i} P x_{i+1} x$.

Lemma. If $|G| \geq 4$ and G is edge-maximal without K_{5} and $K_{3,3}$ as topological minors, then G is 3-connected.

Lemma. Let \mathcal{X} be a set of 3 -connected graphs. Let G be a graph with $\kappa(G) \leq 2$, and let G_{1}, G_{2} be proper induced subgraphs of G such that $G=G_{1} \cup G_{2}$ and $\left|G_{1} \cap G_{2}\right|=\kappa(G)$. If G is edge-maximal without a topological minor in \mathcal{X}, then so are G_{1} and G_{2}, and $G_{1} \cap G_{2}=K_{2}$.

- asdf: Every vertex $v \in S=V\left(G_{1} \cap G_{2}\right)$ has a neighbour in every component of $G_{i}-S$ for $i \in\{1,2\}$, otherwise S would separate G, contradicting $|S|=\kappa(G)$. By maximality of G, every edge e added to G lies in a subgraph topologically equivalent to some $X \in \mathcal{X}$.

0.7 Five Colour Theorem

Theorem (Five Colour Theorem). Every planar graph is 5-colourable.

- Induction on $|V|$: Apply induction on $|V|$. Basis case $|V|<5$ is trivial.
- Find a vertex of degree ≤ 5 :
- Prove inequality: Prove that $E \leq 3 V-6$ using the following:
* Euler's formula: $F-E+V=2$.
* Count edges: $3 F \leq 2 E$, since each face has at least 3 edges.
- Contradiction: If $\forall v \in V: \operatorname{deg} v \geq 6$ then $2 E=\sum_{v \in V} \operatorname{deg} v \geq 6 V$. Both inequalities together give $6 V-12 \geq 2 E \geq 6 V$, a contradiction.
- Degree <5 : By induction hypothesis $G-v$ admits a 5 -colouring. Since $\operatorname{deg} v \leq 4$, the remaining colour can be used for v.
- Degree $=5$:
- Pick non-adjacent neighbours: Let a, b be any two non-adjacent neighbours of v (if $N(v)=K_{5}$ then G is not planar, a contradiction).
- Find a colouring with $c(a)=c(b)$: Consider $G^{\prime}=(G-v+a b) / a b . G^{\prime}$ is planar, so by induction hypothesis it is 5 -colourable. This yields a 5 -colouring of G, where a and b get the same colour. Only 4 colours are used for the neighbours of v, so one colour is left for v.

0.8 Brooks' Theorem

Theorem (Brooks, 1941). A connected graph G that is neither complete nor an odd cycle has $\chi(G) \leq \Delta(G)$.

- Induction on $|V|$: Apply induction on $|V|$.
- Trivial for small Δ : If $\Delta(G) \leq 2$ then in fact $\Delta(G)=2$ and G is a path of length at least 2 or an even cycle, so $\chi(G)=\Delta(G)=2$. From now on assume that $\Delta(G) \geq 3$. In particular, $|V| \geq 4$. Let $\Delta=\Delta(G)$.
- Δ-colouring for $G-v$: Let v be any fixed vertex of G and $H=G-v$. To show that $\chi(H) \leq \Delta$, for each component H^{\prime} of H consider two cases.
- Generic case: If H^{\prime} is not complete or an odd cycle, then by induction hypothesis $\chi\left(H^{\prime}\right) \leq$ $\Delta\left(H^{\prime}\right) \leq \Delta$.
- Complete graph or an odd cycle: If H^{\prime} is complete or an odd cycle, then all its vertices have maximum degree and at least one is adjacent to v. Hence, $\chi\left(H^{\prime}\right)=\Delta\left(H^{\prime}\right)+1 \leq \Delta$.
- Assume the opposite: Assume $\chi(G)>\Delta(G)$. This assumption imposes a certain structure on G leading to a contradiction.

1. Neighbours of v form a "rainbow": Since $\chi(H) \leq \Delta<\chi(G)$, every Δ-colouring of H uses all Δ colours on $N(v)$. In particular, $\operatorname{deg}(v)=\Delta$. Let $N(v)=\left\{v_{1}, \ldots, v_{\Delta}\right\}$ with $c\left(v_{i}\right)=i$.
2. 2-coloured components: Vertices v_{i} and v_{j} lie in a common component $C_{i j}$ of the subgraph induced by all vertices of colours $i \neq j$. Otherwise we could interchange the colours in one of the components, contradicting property 1.
3. Every component is a path: $\operatorname{deg}_{G}\left(v_{k}\right) \leq \Delta$ so $\operatorname{deg}_{H}\left(v_{k}\right) \leq \Delta-1$ and the neighbours of v_{k} have pairwise different colours. Otherwise we could recolour v_{k} contrary to property 1 . Thus, the only neighbour of v_{i} in $C_{i j}$ is on a $v_{i}-v_{j}$ path P in $C_{i j}$, and similarly for v_{j}. If $C_{i j} \neq P$ then some inner vertex of P has 3 neighbours in H of the same colour. Let u be the first such vertex on P. Since at most $\Delta-2$ colours are used on its neighbours, we can recolour u, contradicting property 2 . Thus $C_{i j}=P$.
4. All paths are internally disjoint: If $v_{j} \neq u \in C_{i j} \cap C_{j k}$, then according to property 3 two neighbours of u are coloured i and two are coloured k. We may recolour u so that v_{i} and v_{j} lie in different components, contradicting property 2 . Hence, all paths $C_{i j}$ are internally vertex-disjoint.

- A contradiction: The structure imposed on G is not possible.
- Non-adjacent neighbours: If all Δ neighbours of v are adjacent, then $G=K_{\Delta+1}$, a contradiction. Assume $v_{1} v_{2} \notin E$.
- First vertex on C_{12} : Let $v_{1} u$ be the first edge on the path $C_{12}\left(u \neq v_{2}\right.$ and $\left.c(u)=2\right)$. After interchanging colours 1 and 3 on the path C_{13}, u is adjacent to a vertex with colour 3 , so it also lies on C_{23}, a contradiction.

0.9 Hajós' Theorem

Theorem (Hajós, 1961). Let G be a graph and $k \in \mathbb{N}$. Then $\chi(G) \geq k$ if and only if G has a k-constructible subgraph.

Definition. The class of k-constructible graphs is defined recursively as follows:

1. K_{k} is k-constructible.
2. If G is k-constructible and $x y \notin E(G)$ then so is $(G+x y) / x y$.
3. If G_{1} and G_{2} are k-constructible and $G_{1} \cap G_{2}=\{x\}, x y_{1} \in E\left(G_{1}\right)$, and $x y_{2} \in E\left(G_{2}\right)$, then $H=$ $\left(G_{1} \cup G_{2}\right)-x y_{1}-x y_{2}+y_{1} y_{2}$ is also k-constructible.

\Longleftarrow

- Trivial: All k-constructible graphs are at least k-chromatic.

1. $\chi\left(K_{k}\right)=k$.
2. If $(G+x y) / x y$ has a colouring with fewer than k colours, then so does G, a contradiction.
3. In any colouring of H vertices y_{1} and y_{2} receive different colours, so one of them, say y_{1}, will be coloured differently from x. Thus, if H can be coloured with fewer than k colours, then so can G_{1}, a contradiction.

\Longrightarrow

- Assume the opposite: The case $k<3$ is trivial, so assume $\chi(G) \geq k \geq 3$, but G has no k constructible subgraph.
- Edge-maximal counterexample: If necessary, add some edges to make G edge-maximal with the property that none of its subgraphs is k-constructible.
- Non-adjacency is not an equivalence relation: G cannot be maximal r-partite, otherwise G admits an r-colouring (colour each stable set with a different colour), hence $r \geq \chi(G) \geq k$ and G contains a k-constructible subgraph K_{k}. Thus, there are vertices x, y_{1}, y_{2} such that $y_{1} x, x y_{2} \notin E(G)$ but $y_{1} y_{2} \in E(G)$. Since G is edge-maximal without a k-constructible subgraph, edge $x y_{i}$ lies in a k-constructible subgraph $H_{i} \subseteq G+x y_{i}$ for each $i \in\{1,2\}$.
- Glue: Let H_{2}^{\prime} be an isomorphic copy of H_{2} such that $H_{2}^{\prime} \cap G=\left(H_{2}-H_{1}\right)+x$ together with an isomorphism $\varphi: H_{2} \rightarrow H_{2}^{\prime}: v \mapsto v^{\prime}$ that fixes $H_{2} \cap H_{2}^{\prime}$ pointwise. Then $H_{1} \cap H_{2}^{\prime}=\{x\}$, so $H=\left(H_{1} \cup H_{2}^{\prime}\right)-x y_{1}-x y_{2}^{\prime}+y_{1} y_{2}^{\prime}$ is k-constructible by step 3 .
- Identify: To transform H into a subgraph of G, one by one identify each vertex $v^{\prime} \in H_{2}^{\prime}-G$ with its copy v^{\prime}. Since $v v^{\prime}$ is never an edge of H, this corresponds to the operation in step 2. Eventually, we obtain a k-constructible subgraph $\left(H_{1} \cup H_{2}\right)-x y_{1}-x y_{2}+y_{1} y_{2} \subseteq G$.

0.10 Vizing's Theorem

Theorem (Vizing, 1964). Every graph G satisfies $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.

- First inequality: Clearly, one needs at least Δ colours to colour the edges of G, so $\chi^{\prime}(G) \geq \Delta$. It remains to show that G admits a $(\Delta+1)$-edge-colouring (from now on, simply "a colouring").
- Induction on $|E|$: Apply induction on $|E|$. Basis case $E=\emptyset$ is trivial.
- Every vertex misses a colour: By induction hypothesis $G-e$ admits a colouring for every $e \in E$. Edges at a given vertex v use at $\operatorname{most} \operatorname{deg}(v) \leq \Delta$ colours, so some colour $\beta \in[\Delta+1]$ is missing at v.
- Define α / β-path: For any $\alpha \neq \beta$ there is a unique maximal walk starting at v with edge colours alternating between α and β. This walk must be a path, for any internal vertex u with $\operatorname{deg}(u) \geq 3$ would be adjacent to two edges of the same colour.
- Assume the opposite: Suppose G has no colouring (that is, $\chi^{\prime}(G)>\Delta(G)+1$).
- End of the α / β-path: Let $x y \in E$ and consider any colouring of $G-x y$. If colour α is missing at x and β is missing at y, then the α / β-path from y ends in x. Otherwise interchange α and β on this path, so now $x y$ has colour α. This gives a colouring of G, a contradiction.
- First "page": Pick $x y_{0} \in E$. By induction, $G_{0}=G-x y_{0}$ has a colouring c_{0}. Let α be the colour missing at x in c_{0}.
- Construct a maximal "book": If y_{0} has colour β_{0} missing in c_{0} and x has a neighbour y with $c_{0}(x y)=\beta_{0}$, let $y_{1}=y$. In general, if β_{i} is missing for y_{i}, let y_{i+1} be such that $c_{0}\left(x y_{i+1}\right)=\beta_{i}$. Let $y_{0}, y_{1}, \ldots, y_{k}$ be a maximal such sequence of distinct neighbours of x.
- "Flip pages": For each graph $G_{i}=G-x y_{i}$ define colouring c_{i} to be identical to c_{0}, except $c_{i}\left(x y_{j}\right)=c_{0}\left(x y_{j+1}\right)$ if $j<i$. In each of the graphs G_{i} vertex x is adjacent to exactly k vertices from the set $\left\{y_{0}, \ldots, y_{k}\right\}$. Moreover, the corresponding edges use all k colours from $\left\{\beta_{1}, \ldots, \beta_{k}\right\}$.
- β-edge at x : Colour $\beta=\beta_{k}$ is missing at y_{k} in all c_{i} (in particular, in c_{k}). However, it is not missing at x in c_{k}, otherwise we could colour $x y_{k}$ with β and extend c_{k}. Hence, x has a β-edge (in each c_{i}). By maximality of k, it must be $x y_{l}$ for some l. In particular, for c_{0} it is $x y_{l}$ with $0<l<k$ $\left(l \neq 0\right.$ since $x y_{0} \notin G_{0}, l \neq k$ since y_{k} misses β), but for c_{k} this is $x y_{l-1}$, since $c_{0}\left(x y_{l}\right)=c_{k}\left(x y_{l-1}\right)$.

- A contradiction:

- Path P : Let P be the α / β-path from y_{k} in G_{k} (with respect to c_{k}). As α is missing at x, P ends at x with the β-edge $x y_{l-1}$.
- Path $P^{\prime}:$ In c_{0}, \ldots, c_{l-1} colour β is missing at y_{l-1}. Let P^{\prime} be the α / β-path from y_{l-1} in G_{l-1} (with respect to c_{l-1}). P^{\prime} must start with $y_{l-1} P y_{k}$ and end in x. However, y_{k} has no β-edge, a contradiction.

0.11 Turán's Theorem

Theorem (Turán, 1941). Let n and $r>1$ be integers. If G is a K_{r}-free graph with n vertices and the largest possible number of edges, then $G=T_{r-1}(n)$, a Turán graph.

- Induction on n : Apply induction on n. Basis case $n \leq r-1$ is trivial, since $K_{n}=T_{r-1}(n)$. Thus, assume $n \geq r$ and let $t_{r-1}(n)=\left\|T_{r-1}(n)\right\|$.
- Complete subgraph of size $r-1$: Adding any edge to G creates K_{r}, thus $K=K_{r-1} \subset G$.
- Upper bound on $\|G\|$: By induction hypothesis, $\|G-K\| \leq t_{r-1}(n-r+1)$. Also, each vertex of $G-K$ has at most $r-2$ neighbours in K, otherwise adding back K would yield a K_{r}. Hence,

$$
\begin{equation*}
\|G\| \leq t_{r-1}(n-r+1)+(n-r+1)(r-2)+\binom{r-1}{2}=t_{r-1}(n) \tag{1}
\end{equation*}
$$

where the last equality follows by inspection of $T_{r-1}(\mathrm{n})$. In fact, $\|G\|=t_{r-1}(n)$, since $T_{r-1}(n)$ is K_{r}-free and G is edge-maximal K_{r}-free.

- Independent sets: Let $x_{1}, x_{2}, \ldots, x_{r-1}$ be the vertices of K and let $V_{i}=\left\{v \in V: v x_{i} \notin E\right\}$. Since the inequality (1) is tight, every vertex of $G-K$ has exactly $r-2$ neighbours in K. Thus, $v x_{i} \notin E$ if and only if $\forall j \neq i: v x_{j} \in E$. Each V_{i} is independent since $K_{r} \nsubseteq G$. Moreover, they partition V. Hence, G is $(r-1)$-partite.
- Maximality: Turán graph $T_{r-1}(n)$ is the unique $(r-1)$-partite graph with n vertices and the maximum number of edges, since all partition sets differ in size by at most 1 . Hence, $G=T_{r-1}(n)$ by the assumed extremality of G.

