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0.1 Berge’s Lemma

Lemma (Berge, 1957). A matching M in a graph G is a maximum matching if and only if G has no
M -augmenting path.

Proof. Let us prove the contrapositive: G has a matching larger thanM if and only ifG has anM -augmenting
path. Clearly, an M -augmenting path P of G can be used to produce a matching M ′ that is larger than
M — just take M ′ to be the symmetric difference of P and M (M ′ contains exactly those edges of G that
appear in exactly one of P and M). Hence, the backward direction follows.

For the forward direction, let M ′ be a matching in G larger than M . Consider D, the symmetric difference
of M and M ′. Observe that D consists of paths and even cycles (each vertex of D has degree at most 2 and
edges belonging to some path or cycle must alternate between M and M ′). Since M ′ is larger than M , D
contains a component that has more edges from M ′ than M . Such a component is a path in G that starts
and ends with an edge from M ′, so it is an M -augmenting path.
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0.2 König’s Theorem

Theorem (König, 1931). The maximum cardinality of a matching in a bipartite graph G is equal to the
minimum cardinality of a vertex cover of its edges.

|C| ≥ |M |

• Trivial: One needs at least |M | vertices to cover all edges of M .

|C| ≤ |M |

• Choose cover: For every edge in M choose its end in B if some alternating path ends there, and its
end in A otherwise.

• Pick edge: Pick ab ∈ E. If ab ∈M , we are done, so assume ab /∈M . Since M is maximal, it cannot
be that both a and b are unmatched.

• Alternating path that ends in b:

– Easy case: If a is unmatched, then b is matched and ab is an alternating path that ends in B,
so b ∈ C.

– Hard case: If b is unmatched, then a is matched to some b′. If a /∈ C, then b′ ∈ C and some
alternating path P ends in b′. If b ∈ P , let P ′ = Pb, otherwise P ′ = Pb′ab. M is maximal, so P ′

is not an augmenting path, so b must be matched and hence b ∈ C, since P ′ ends at b.
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0.3 Hall’s Theorem

Theorem (Hall, 1935). A bipartite graph G contains a matching of A if and only if |N(S)| ≥ |S| for all
S ⊆ A.

=⇒

• Trivial: If A is matched then every S ⊆ A has at least |S| neighbours.

⇐=

• Induction on |A|: Apply induction on |A|. Base case |A| = 1 is trivial.

• Many neighbours: Assume |N(S)| ≥ |S|+ 1 for every S 6= ∅. By induction hypothesis G− e has a
matching M , where e ∈ E can be chosen arbitrarily. Then M ∪ {e} is a matching of A.

• Few neighbours: Assume |N(S)| = |S| for some S /∈ {∅, A}.

– Cut in two pieces: Consider graphs GS and GA\S induced by S∪N(S) and (A\S)∪(B\N(S)),
respectively.

– Check marriage condition: It holds for both graphs:

∗ We kept all neighbours of S, so |NGS
(S)| = |NG(S)|.

∗ If
∣∣NGA\S (S′)

∣∣ < |S′| for some S′ ⊆ A \ S, then |NG(S ∪ S′)| = |NG(S)| +
∣∣NGA\S (S′)

∣∣ <
|S|+ |S′|, a contradiction.

– Put matchings together: By induction hypothesis GS and GA\S contain matchings for S and
A \ S, respectively. Putting these together gives a matching of A in G.
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0.4 Tutte’s Theorem

Theorem (Tutte, 1947). A graph G has a 1-factor if and only if q(G − S) ≤ |S| for all S ⊆ V (G), where
q(H) is the number of odd order components of H.

=⇒

• Trivial: If G has a 1-factor, then Tutte’s condition is satisfied.

⇐=

• Consider an edge-maximal counterexample G: Let G be a counterexample (G satisfies Tutte’s
condition, but has no 1-factor). Addition of edges preserves Tutte’s property, so it suffices to consider
an edge-maximal counterexample G (adding any edge yields a 1-factor).

• G has no bad set: We call S ⊆ V bad if ∀s ∈ S, ∀v ∈ V : sv ∈ E and all components of G − S are
complete. If S is a bad set in a graph with no 1-factor, then S or ∅ violates Tutte’s condition. Thus,
G has no bad set.

• Choose S′: Let S′ = {v ∈ V : v is adjacent to all other vertices}. Since S′ is not bad, G − S′ has a
component A with non-adjacent vertices a, a′.

• Define a, b, c, d: Let a, b, c ∈ A be the first 3 vertices on the shortest a− a′ path within A (ab, bc ∈ E
but ac /∈ E). Moreover, since b /∈ S′, there exists d ∈ V such that bd /∈ E.

• Even cycles containing ac and bd: G is edge-maximal without 1-factor, so let Mac and Mbd be
1-factors of G+ ac and G+ bd, respectively. Mac ⊕Mbd consists of disjoint even cycles, so let Cac and
Cbd be the cycles containing ac and bd, respectively.

• Contradiction by constructing a 1-factor:

– If ac /∈ Cbd then Mbd ⊕ Cbd is a 1-factor of G.

– If ac ∈ Cbd then Mbd ⊕ γ is a 1-factor of G, where γ = bd . . . is the shortest cycle whose vertices
are all in Cbd and the last edge being either ab or cb. In particular, ac /∈ E(γ).
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0.5 Menger’s Theorem

Theorem (Menger, 1927). Let G = (V,E) be a graph and A,B ⊆ V . Then the minimums number of
vertices separating A from B in G is equal to the maximum number of disjoint A−B paths in G.

“min separator” ≥ “max # of paths”

• Trivial: To separate A from B one must cut every A−B path .

“min separator” ≤ “max # of paths”

• Induction on |E|: Apply induction on |E|. Let k be the size of a minimal A−B separator. If E = ∅
then |A ∩B| = k and there are k trivial paths.

• Find a separator containing an edge: |E| ≥ 1, so G has an edge e = xy. First find an A − B
separator containing adjacent vertices.

– Contract e: If G contains less than k disjoint A − B paths, then so does G/e. Let ve be the
vertex obtained by contracting e.

– Find a smaller separator: Let Y be a smallest A − B separator in G/e. It must be the case
that |Y | is either k − 1 or k:

∗ A minimal A−B separator in G is also an A−B separator in G/e, so |Y | ≤ k.

∗ If |Y | ≤ k − 2 then G has an A−B separator of size k − 2 (if ve /∈ Y ) or k − 1 (if ve ∈ Y ), a
contradiction.

If |Y | = k, by induction hypothesis there exist k disjoint A − B paths and we are done. Thus,
|Y | = k− 1. Also, ve ∈ Y since otherwise Y would be an A−B separator in G of size less than k.

– Extend the separator: X = (Y \ {ve})∪{x, y} is an A−B separator in G of size k, containing
edge e = xy.

• Remove the edge and apply induction hypothesis: To apply the induction hypothesis, consider
G− e. Use X as one of the sets A,B.

– A−X paths: Every A−X separator in G−e is also an A−B separator in G and hence contains
at least k vertices. By induction hypothesis there are k disjoint A−X paths in G− e

– X −B paths: Similarly.

– Combine paths: X separates A and B in G, so these two paths systems do not meet outside of
X and thus can be combined into k disjoint A−B paths.
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0.6 Kuratowski’s Theorem

Theorem (Kuratowski, 1930; Wagner, 1937). The following assertions are equivalent:

1. G is planar;

2. G contains neither K5 nor K3,3 as a minor;

3. G contains neither K5 nor K3,3 as a topological minor.

Kuratowski’s theorem follows from these lemmas:

• Lemma (2⇔ 3). A graph contains K5 or K3,3 as a minor if and only if it contains K5 or K3,3 as a
topological minor.

• Lemma (3-connected case). Every 3-connected graph without a K5 or K3,3 minor is planar.

• Lemma. If |G| ≥ 4 and G is edge-maximal without K5 and K3,3 as topological minors, then G is
3-connected.

Lemma (2 ⇔ 3). A graph contains K5 or K3,3 as a minor if and only if it contains K5 or K3,3 as a
topological minor.

⇐=

• Trivial: Every topological minor is also a minor.

=⇒

• Trivial for K3,3: Every minor with maximum degree at most 3 is also a topological minor.

• Remaining part: It suffices to show that every graph G with a K5 minor contains K5 as a topological
minor or K3,3 as a minor.
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Lemma (3-connected case). Every 3-connected graph without a K5 or K3,3 minor is planar.

• Induction on |V |: Apply induction on V . If |V | = 4 then G = K4, which is planar.

• Contract edge xy: G has an edge xy such that G/xy is again 3-connected. Moreover, G/xy has no
K5 and no K3,3 minor. By induction hypothesis G/xy admits a plane drawing G̃.

• A partial drawing: Let f be the face of G̃−vxy containing vxy. The boundary C of f is a cycle, since

G̃− vxy is 2-connected. Let X = NG(x) \ {y} and Y = NG(y) \ {x}. Let G̃X = G̃−{vxyv : v ∈ Y \X}
be the drawing G̃ with only those neighbours of vxy left that are in X. G̃X may be viewed as a drawing

of G− y in which x is represented by vxy. We want to add y back to G̃X .

• Arcs: Fix a direction of the cycle C and enumerate the vertices of X ∩ C as x0, . . . , xk−1. Also, let
P = {xi . . . xi+1 : i ∈ Zk} be the set of paths connecting xi and xi+1 along C for all i.

• Arc containing Y : Let us show that Y ⊆ V (P ) for some P ∈ P. Assume not. Since G is 3-connected,
x and y each have at least two neighbours in C. By assumption, there exist distinct P ′, P ′′ ∈ P and
distinct y′, y′′ ∈ Y , such that y′ ∈ P ′, y′′ ∈ P ′′, and y′, y′′ /∈ P ′ ∩ P ′′. We get a contradiction with
planarity of G as follows:

– If Y * X then y′ can be assumed to be an inner vertex of P ′, so the endpoints x′ and x′′ of
P ′ separate y′ from y′′ in C. These four vertices together with x and y form a subgraph that is
topologically equivalent to K3,3 (the two stable sets are {x, y′, y′′} and {y, x′, x′′}).

– If Y ⊆ X then y′, y′′ ∈ Y ∩X and we consider two cases:

∗ If |Y ∩X| = 2, then y′ and y′′ must be separated by two neighbours of x and we obtain K3,3

as before.

∗ Otherwise, let y′′′ ∈ (Y ∩X) \ {y′, y′′}. Then x and y have three common neighbours on C
and these together with x and y form a subgraph that is topologically equivalent to K5.

• Add back vertex y: As Y ⊆ V (P ) where P = xi . . . xi+1 for some i ∈ Zk, the drawing G̃X can be
extended to a plane drawing of G by putting y in the face fi ⊆ f of the cycle xxiPxi+1x.
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Lemma. If |G| ≥ 4 and G is edge-maximal without K5 and K3,3 as topological minors, then G is 3-connected.

Lemma. Let X be a set of 3-connected graphs. Let G be a graph with κ(G) ≤ 2, and let G1, G2 be proper
induced subgraphs of G such that G = G1 ∪ G2 and |G1 ∩G2| = κ(G). If G is edge-maximal without a
topological minor in X , then so are G1 and G2, and G1 ∩G2 = K2.

• asdf: Every vertex v ∈ S = V (G1 ∩G2) has a neighbour in every component of Gi − S for i ∈ {1, 2},
otherwise S would separate G, contradicting |S| = κ(G). By maximality of G, every edge e added to
G lies in a subgraph topologically equivalent to some X ∈ X .
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0.7 Five Colour Theorem

Theorem (Five Colour Theorem). Every planar graph is 5-colourable.

• Induction on |V |: Apply induction on |V |. Basis case |V | < 5 is trivial.

• Find a vertex of degree ≤ 5:

– Prove inequality: Prove that E ≤ 3V − 6 using the following:

∗ Euler’s formula: F − E + V = 2.

∗ Count edges: 3F ≤ 2E, since each face has at least 3 edges.

– Contradiction: If ∀v ∈ V : deg v ≥ 6 then 2E =
∑

v∈V deg v ≥ 6V . Both inequalities together
give 6V − 12 ≥ 2E ≥ 6V , a contradiction.

• Degree < 5: By induction hypothesis G − v admits a 5-colouring. Since deg v ≤ 4, the remaining
colour can be used for v.

• Degree = 5:

– Pick non-adjacent neighbours: Let a, b be any two non-adjacent neighbours of v (if N(v) = K5

then G is not planar, a contradiction).

– Find a colouring with c(a) = c(b): Consider G′ = (G−v+ab)/ab. G′ is planar, so by induction
hypothesis it is 5-colourable. This yields a 5-colouring of G, where a and b get the same colour.
Only 4 colours are used for the neighbours of v, so one colour is left for v.
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0.8 Brooks’ Theorem

Theorem (Brooks, 1941). A connected graph G that is neither complete nor an odd cycle has χ(G) ≤ ∆(G).

• Induction on |V |: Apply induction on |V |.

• Trivial for small ∆: If ∆(G) ≤ 2 then in fact ∆(G) = 2 and G is a path of length at least 2 or an
even cycle, so χ(G) = ∆(G) = 2. From now on assume that ∆(G) ≥ 3. In particular, |V | ≥ 4. Let
∆ = ∆(G).

• ∆-colouring for G− v: Let v be any fixed vertex of G and H = G− v. To show that χ(H) ≤ ∆, for
each component H ′ of H consider two cases.

– Generic case: If H ′ is not complete or an odd cycle, then by induction hypothesis χ(H ′) ≤
∆(H ′) ≤ ∆.

– Complete graph or an odd cycle: If H ′ is complete or an odd cycle, then all its vertices have
maximum degree and at least one is adjacent to v. Hence, χ(H ′) = ∆(H ′) + 1 ≤ ∆.

• Assume the opposite: Assume χ(G) > ∆(G). This assumption imposes a certain structure on G
leading to a contradiction.

1. Neighbours of v form a “rainbow”: Since χ(H) ≤ ∆ < χ(G), every ∆-colouring of H uses
all ∆ colours on N(v). In particular, deg(v) = ∆. Let N(v) = {v1, . . . , v∆} with c(vi) = i.

2. 2-coloured components: Vertices vi and vj lie in a common component Cij of the subgraph
induced by all vertices of colours i 6= j. Otherwise we could interchange the colours in one of the
components, contradicting property 1.

3. Every component is a path: degG(vk) ≤ ∆ so degH(vk) ≤ ∆ − 1 and the neighbours of vk
have pairwise different colours. Otherwise we could recolour vk contrary to property 1. Thus, the
only neighbour of vi in Cij is on a vi − vj path P in Cij , and similarly for vj . If Cij 6= P then
some inner vertex of P has 3 neighbours in H of the same colour. Let u be the first such vertex
on P . Since at most ∆ − 2 colours are used on its neighbours, we can recolour u, contradicting
property 2. Thus Cij = P .

4. All paths are internally disjoint: If vj 6= u ∈ Cij ∩ Cjk, then according to property 3 two
neighbours of u are coloured i and two are coloured k. We may recolour u so that vi and vj lie in
different components, contradicting property 2. Hence, all paths Cij are internally vertex-disjoint.

• A contradiction: The structure imposed on G is not possible.

– Non-adjacent neighbours: If all ∆ neighbours of v are adjacent, then G = K∆+1, a contradic-
tion. Assume v1v2 /∈ E.

– First vertex on C12: Let v1u be the first edge on the path C12 (u 6= v2 and c(u) = 2). After
interchanging colours 1 and 3 on the path C13, u is adjacent to a vertex with colour 3, so it also
lies on C23, a contradiction.
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0.9 Hajós’ Theorem

Theorem (Hajós, 1961). Let G be a graph and k ∈ N. Then χ(G) ≥ k if and only if G has a k-constructible
subgraph.

Definition. The class of k-constructible graphs is defined recursively as follows:

1. Kk is k-constructible.

2. If G is k-constructible and xy /∈ E(G) then so is (G+ xy)/xy.

3. If G1 and G2 are k-constructible and G1 ∩ G2 = {x}, xy1 ∈ E(G1), and xy2 ∈ E(G2), then H =
(G1 ∪G2)− xy1 − xy2 + y1y2 is also k-constructible.

⇐=

• Trivial: All k-constructible graphs are at least k-chromatic.

1. χ(Kk) = k.

2. If (G+ xy)/xy has a colouring with fewer than k colours, then so does G, a contradiction.

3. In any colouring of H vertices y1 and y2 receive different colours, so one of them, say y1, will be
coloured differently from x. Thus, if H can be coloured with fewer than k colours, then so can
G1, a contradiction.

=⇒

• Assume the opposite: The case k < 3 is trivial, so assume χ(G) ≥ k ≥ 3, but G has no k-
constructible subgraph.

• Edge-maximal counterexample: If necessary, add some edges to make G edge-maximal with the
property that none of its subgraphs is k-constructible.

• Non-adjacency is not an equivalence relation: G cannot be maximal r-partite, otherwise G
admits an r-colouring (colour each stable set with a different colour), hence r ≥ χ(G) ≥ k and G
contains a k-constructible subgraph Kk. Thus, there are vertices x, y1, y2 such that y1x, xy2 /∈ E(G)
but y1y2 ∈ E(G). Since G is edge-maximal without a k-constructible subgraph, edge xyi lies in a
k-constructible subgraph Hi ⊆ G+ xyi for each i ∈ {1, 2}.

• Glue: Let H ′2 be an isomorphic copy of H2 such that H ′2 ∩ G = (H2 − H1) + x together with
an isomorphism ϕ : H2 → H ′2 : v 7→ v′ that fixes H2 ∩ H ′2 pointwise. Then H1 ∩ H ′2 = {x}, so
H = (H1 ∪H ′2)− xy1 − xy′2 + y1y

′
2 is k-constructible by step 3.

• Identify: To transform H into a subgraph of G, one by one identify each vertex v′ ∈ H ′2 −G with its
copy v′. Since vv′ is never an edge of H, this corresponds to the operation in step 2. Eventually, we
obtain a k-constructible subgraph (H1 ∪H2)− xy1 − xy2 + y1y2 ⊆ G.
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0.10 Vizing’s Theorem

Theorem (Vizing, 1964). Every graph G satisfies ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

• First inequality: Clearly, one needs at least ∆ colours to colour the edges of G, so χ′(G) ≥ ∆. It
remains to show that G admits a (∆ + 1)-edge-colouring (from now on, simply “a colouring”).

• Induction on |E|: Apply induction on |E|. Basis case E = ∅ is trivial.

• Every vertex misses a colour: By induction hypothesis G− e admits a colouring for every e ∈ E.
Edges at a given vertex v use at most deg(v) ≤ ∆ colours, so some colour β ∈ [∆ + 1] is missing at v.

• Define α/β-path: For any α 6= β there is a unique maximal walk starting at v with edge colours
alternating between α and β. This walk must be a path, for any internal vertex u with deg(u) ≥ 3
would be adjacent to two edges of the same colour.

• Assume the opposite: Suppose G has no colouring (that is, χ′(G) > ∆(G) + 1).

– End of the α/β-path: Let xy ∈ E and consider any colouring of G− xy. If colour α is missing
at x and β is missing at y, then the α/β-path from y ends in x. Otherwise interchange α and β
on this path, so now xy has colour α. This gives a colouring of G, a contradiction.

– First “page”: Pick xy0 ∈ E. By induction, G0 = G − xy0 has a colouring c0. Let α be the
colour missing at x in c0.

– Construct a maximal “book”: If y0 has colour β0 missing in c0 and x has a neighbour y with
c0(xy) = β0, let y1 = y. In general, if βi is missing for yi, let yi+1 be such that c0(xyi+1) = βi.
Let y0, y1, . . . , yk be a maximal such sequence of distinct neighbours of x.

– “Flip pages”: For each graph Gi = G − xyi define colouring ci to be identical to c0, except
ci(xyj) = c0(xyj+1) if j < i. In each of the graphs Gi vertex x is adjacent to exactly k vertices
from the set {y0, . . . , yk}. Moreover, the corresponding edges use all k colours from {β1, . . . , βk}.

– β-edge at x: Colour β = βk is missing at yk in all ci (in particular, in ck). However, it is not
missing at x in ck, otherwise we could colour xyk with β and extend ck. Hence, x has a β-edge (in
each ci). By maximality of k, it must be xyl for some l. In particular, for c0 it is xyl with 0 < l < k
(l 6= 0 since xy0 /∈ G0, l 6= k since yk misses β), but for ck this is xyl−1, since c0(xyl) = ck(xyl−1).

• A contradiction:

– Path P : Let P be the α/β-path from yk in Gk (with respect to ck). As α is missing at x, P ends
at x with the β-edge xyl−1.

– Path P ′: In c0, . . . , cl−1 colour β is missing at yl−1. Let P ′ be the α/β-path from yl−1 in Gl−1

(with respect to cl−1). P ′ must start with yl−1Pyk and end in x. However, yk has no β-edge, a
contradiction.
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0.11 Turán’s Theorem

Theorem (Turán, 1941). Let n and r > 1 be integers. If G is a Kr-free graph with n vertices and the largest
possible number of edges, then G = Tr−1(n), a Turán graph.

• Induction on n: Apply induction on n. Basis case n ≤ r − 1 is trivial, since Kn = Tr−1(n). Thus,
assume n ≥ r and let tr−1(n) = ‖Tr−1(n)‖.

• Complete subgraph of size r − 1: Adding any edge to G creates Kr, thus K = Kr−1 ⊂ G.

• Upper bound on ‖G‖: By induction hypothesis, ‖G−K‖ ≤ tr−1(n − r + 1). Also, each vertex of
G−K has at most r − 2 neighbours in K, otherwise adding back K would yield a Kr. Hence,

‖G‖ ≤ tr−1(n− r + 1) + (n− r + 1)(r − 2) +

(
r − 1

2

)
= tr−1(n), (1)

where the last equality follows by inspection of Tr−1(n). In fact, ‖G‖ = tr−1(n), since Tr−1(n) is
Kr-free and G is edge-maximal Kr-free.

• Independent sets: Let x1, x2, . . . , xr−1 be the vertices of K and let Vi = {v ∈ V : vxi /∈ E}. Since
the inequality (1) is tight, every vertex of G −K has exactly r − 2 neighbours in K. Thus, vxi /∈ E
if and only if ∀j 6= i : vxj ∈ E. Each Vi is independent since Kr * G. Moreover, they partition V .
Hence, G is (r − 1)-partite.

• Maximality: Turán graph Tr−1(n) is the unique (r−1)-partite graph with n vertices and the maximum
number of edges, since all partition sets differ in size by at most 1. Hence, G = Tr−1(n) by the assumed
extremality of G.
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