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1 Introduction

Initially my plan was to write about geometry of quantum states of an n-level
quantum system. When I was about to finish the qubit case, I realized that I
will not be able to cover the remaining part (n ≥ 3) in a reasonable amount of
time. Therefore the generalized Bloch sphere part is completely omitted and I
will discuss only the qubit. I will also avoid discussing mixed states.

In general a good reference for this topic is the recent book [1]. Some of
the material here is a part of my research – I will indicate it with a star∗. All
pictures I made myself using Mathematica.

The aim of this essay is to convince the reader that despite the fact that
quantum states live in a very strange projective Hilbert space, it is possible to
speak of its geometry and even visualize some of its aspects.

2 Complex projective space

A pure state of an n-level quantum system is a vector |ψ〉 in C
n. It is common

to normalize it so that |〈ψ|ψ〉|2 = 1, thus one can think of |ψ〉 as a unit vector.
Since the phase factor eiφ (φ ∈ R) can not be observed, vectors |ψ〉 and eiφ |ψ〉
correspond to the same physical state.

We can capture both conventions by introducing an equivalence relation

ψ ∼ ψ′ ⇔ ψ = cψ′ for some nonzero c ∈ C,

where ψ and ψ′ are nonzero vectors in C
n. One can think of each equivalence

class as a “complex” line through the origin in C
n. These lines form a complex

projective space CPn−1 (superscript n− 1 stands for the complex dimension of
the space). There is a one-to-one correspondence between points in CPn−1 and
physical states of an n-level quantum system.

Unfortunately this description does not make us understand the complex
projective space. All we can do is to use the analogy with real projective space

RPn−1 (here n− 1 stands for the real dimension).
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For example, if we perform the above construction in R
3, we obtain real

projective plane RP2. One can think of a “point” in RP2 as a line through the
origin in R

3. We can generalize this idea by saying that a “line” in RP2 is a
plane through the origin in R

3.
If we restrict our attention only to the unit sphere S2 at the origin of R

3, we
see that a “point” in RP2 corresponds to two antipodal points on the sphere,
but a “line” corresponds to a great circle. Thus we can think of real projective
plane RP2 as the unit sphere S2 in R

3 with antipodal points identified. This
space has a very nice structure:

• every two distinct “lines” (great circles) intersect in exactly one “point”
(a pair of antipodal points),

• every two distinct “points” determine a unique “line” (the great circle
through the corresponding points),

• there is a duality between “points” and “lines” (consider the plane in R
3

orthogonal to the line determined by two antipodal points).

According to the above discussion, the state space of a single qubit corre-
sponds to the complex projective line CP1. The remaining part of this essay
will be about ways how to visualize it. At first in Sect. 3 I will consider the
standard Bloch sphere representation of a qubit and discuss some properties of
Pauli matrices. Then I will consider two ways of representing the qubit state
with a single complex number. In Sect. 4 the state space will be visualized as a
unit disk in the complex plane, but in Sect. 5 – as the extended complex plane
C∞. Then in Sect. 6 I will discuss the stereographic projection that provides a
correspondence between the extended complex plane C∞ and the Bloch sphere
S2. I will conclude the essay in Sect. 7 with the discussion of the Hopf fibration
of the 3-sphere S3, that makes the correspondence between CP1 and the Bloch
sphere S2 possible. I will also shortly discuss the possibility of using other Hopf
fibrations to study the systems of several qubits.

3 Bloch sphere representation

This section is a quick introduction to the standard Bloch sphere representation
of a single qubit state. I will begin by defining the Bloch vector, and expressing
the qubit density matrix in terms of it. Then I will show how this can be used
to express a general 2 × 2 unitary matrix. I will conclude this section with the
discussion of several interesting facts about Pauli matrices.

A pure qubit state |ψ〉 is a point in CP1. The standard convention is to
assume that it is a unit vector in C

2 and ignore the global phase. Then without
the loss of generality we can write

|ψ〉 =

(

cos θ
2

eiϕ sin θ
2

)

, (1)
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Figure 1: Angles θ and ϕ of the Bloch vector corresponding to state |ψ〉.

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π (the factor 1/2 for θ in (1) is chosen so that
these ranges resemble the ones for spherical coordinates).

For almost all states |ψ〉 there is a unique way to assign the parameters θ
and ϕ. The only exception are states |0〉 and |1〉, that correspond to θ = 0 and
θ = π respectively. In both cases ϕ does not affect the physical state. Note that
spherical coordinates with latitude θ and longitude ϕ have the same property,
namely – the longitude is not defined at poles. This suggests that the state
space of a single qubit is topologically a sphere.

3.1 Bloch vector

Indeed, there is a one-to-one correspondence between pure qubit states and the
points on a unit sphere S2 in R

3. This is called Bloch sphere representation of
a qubit state (see Fig. 1). The Bloch vector for state (1) is ~r = (x, y, z), where











x = sin θ cosϕ,

y = sin θ sinϕ,

z = cos θ.

(2)

The density matrix of (1) is

ρ = |ψ〉 〈ψ| =
1

2

(

1 + cos θ e−iϕ sin θ
eiϕ sin θ 1 − cos θ

)

=
1

2
(I + xσx + yσy + zσz) , (3)

where (x, y, z) are the coordinates of the Bloch vector and

I =

(

1 0
0 1

)

, σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

(4)

are called Pauli matrices. We can write (3) more concisely as

ρ =
1

2
(I + ~r · ~σ) , ~r = (x, y, z), ~σ = (σx, σy, σz). (5)

3



If ~r1 and ~r2 are the Bloch vectors of two pure states |ψ1〉 and |ψ2〉, then

|〈ψ1|ψ2〉|2 = Tr(ρ1ρ2) =
1

2
(1 + ~r1 · ~r2). (6)

This relates the inner product in C
2 and R

3. Notice that orthogonal quantum
states correspond to antipodal points on the Bloch sphere, i.e., if |〈ψ1|ψ2〉|2 = 0,
then ~r1 · ~r2 = −1 and hence ~r1 = −~r2.

3.2 General 2 × 2 unitary∗

A useful application of the Bloch sphere representation is the expression for a
general 2 × 2 unitary matrix. I have seen several such expressions, but it is
usually hard to memorize them or to understand the intuition. I am sure that
my way of writing it is definitely covered in some book, but I have not seen one.

To understand the intuition, consider the unitary

U = |0〉 〈0| + eiϕ |1〉 〈1| =

(

1 0
0 eiϕ

)

. (7)

It acts on the basis states as follows:

U |0〉 = |0〉 , U |1〉 = eiϕ |1〉 . (8)

Since U adds only a global phase to |0〉 and |1〉, their Bloch vectors (0, 0,±1)
must correspond to the axis of rotation of U . To get the angle of rotation,
consider how U acts on |+〉:

U
|0〉 + |1〉√

2
=

|0〉 + eiϕ |1〉√
2

=
1√
2

(

1
eiϕ

)

,

which is |+〉 rotated by an angle ϕ around z-axis. Notice that (8) just means
that |0〉 and |1〉 are the eigenvectors of U with eigenvalues 1 and eiϕ.

To write down a general rotation around axis ~r by angle ϕ, we use the fact
that ~r and −~r correspond to orthogonal quantum states. Then in complete
analogy with (7) we write:

U(~r, ϕ) = ρ(~r) + eiϕρ(−~r). (9)

In fact, this is just the spectral decomposition.

3.3 Pauli matrices

Now let us consider some properties of the Pauli matrices (4) that appeared in
the expression (5) of the qubit density matrix.
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3.3.1 Finite field of order 4

The first observation is that they form a group (up to global phase) under matrix
multiplication. For example, σx · σy = iσz ≈ σz. This group is isomorphic to
Z2×Z2 = ({00, 01, 10, 11} ,+). However, one can think of it also as the additive
group of the finite field of order 4:

F4 = (
{

0, 1, ω, ω2
}

,+, ∗), x ≡ −x, ω2 ≡ ω + 1,

because the elements of F
4 can be thought as vectors of a two-dimensional vector

space with basis {1, ω}, where 1 ≡
(

1
0

)

and ω ≡
(

0
1

)

. Then one possible way to
define the correspondence between Pauli matrices and F4 is [2]:

(0, 1, ω, ω2) ⇐⇒ (I, σx, σz, σy).

This is useful when constructing quantum error correction codes [2].

3.3.2 Quaternions

If we want to capture the multiplicative properties of Pauli matrices in more
detail, then we have to consider the global phase. The set of all possible phases
that can be obtained by multiplying Pauli matrices is {±1,±i}. Thus we can get
a group of order 16. However, we can get a group of order 8 with the following
trick: (iσx) · (iσy) = −(iσz), thus the phases are only ±1. It turns out that this
group is isomorphic to the multiplicative group of quaternions:

(1, i, j, k) ⇐⇒ (I, iσz, iσy, iσx).

The laws of quaternion multiplication can be derived from:

i2 = j2 = k2 = ijk = −1.

3.3.3 Clifford group∗

Pauli matrices are elements of a larger group called Clifford group or normalizer

group. In the qubit case it is defined as follows:

C = {U |σ ∈ P ⇒ UσU† ∈ P}, where P = {±I,±σx,±σy,±σz} .

For example, the Hadamard gate H = 1√
2

(

1 1
1 −1

)

is also in this set. One can

show that a matrix is in the Clifford group if and only if it corresponds to a
rotation of the Bloch sphere that permutes the coordinate axes (both, positive
and negative directions). For example, it can send direction x to direction −z.
There are 6 ways where the first axis can go, and then 4 ways for the second
axis – once the first axis is fixed, we can only rotate by π/2 around it. Hence
there are 24 such rotations.

Let us see what they correspond to. Consider the rotation axes correspond-
ing to the vertices of octahedron, cube, and cuboctahedron shown in Fig. 2:
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Figure 2: Octahedron, cube, and cuboctahedron.

Figure 3: Two views of cuboctahedron. The 24 arrows correspond to the mid-
points of its edges. Clifford group operations permute these arrows transitively.

• Octahedron has 6 vertices and thus 3 rotation axes (they are the coordinate
axes x, y, z). There are 3 possible rotation angles: ±π/2 and π. Hence
we get 3 · 3 = 9 rotations. For example, Pauli matrices are of this type,
since they correspond to a rotation by π about some coordinate axis.

• Cube has 8 vertices and therefore 4 axes. There are only 2 possible angles
±2π/3 giving 4 · 2 = 8 rotations.

• Cuboctahedron has 12 vertices and 6 axes. The only possible angle is π,
thus it gives 6 rotations. For example, the Hadamard matrix is of this
type (it swaps x and z axis).

If we total, we get 23, plus the identity operation is 24. The unitary matrices
for these rotations can be found using (9).

One can observe that all three polyhedra shown in Fig. 2 have the same
symmetry group and it has order 24. This group is isomorphic to S4 – the
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Figure 4: Hadamard transformation H in the unit disk representation. The
disks shown correspond to the states |0〉 and |+〉 = H |0〉 respectively.

symmetric group of 4 objects, since the corresponding rotations allow to permute
the four diagonals of the cube in arbitrary way.

There is a uniform way of characterizing the three types of rotations de-
scribed above. Observe that cuboctahedron has exactly 24 edges and there is
exactly one way how to take one edge to other, because each edge has a triangle
on one side and a square on the other. Therefore the Clifford group consists of
exactly those rotations that take one edge of a cuboctahedron to another. This
is illustrated in Fig. 3.

4 Unit disk representation∗

There is another geometrical interpretation of equation (1). Observe that a pure
qubit state |ψ〉 =

(

α
β

)

∈ C
2 is completely determined by its second component

β = eiϕ sin θ
2
. (10)

Since |β| ≤ 1, the set of pure qubit states can be identified with a unit disk in
the complex plane (the polar coordinates of β are (r, ϕ), where r = sin θ

2
). The

origin corresponds to |0〉, but all points on the unit circle |β| = 1 are identified
with |1〉. The topological interpretation is that we puncture the Bloch sphere
at its South pole and flatten it to a unit disk.

As an example of a unitary operation in this representation, consider the
action of the Hadamard gate H. The way it transforms the curves of constant
θ and ϕ is shown in Fig. 4. After this transformation the origin corresponds to
|+〉, but the unit circle to |−〉 state. The states |1〉 and |0〉 correspond to the
“left pole” and “right pole” respectively.
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Figure 5: Octahedron, cube, and cuboctahedron in the unit disk representation.
Their vertices are the roots of polynomials (11), (12), and (13) respectively.

Another way of interpreting Fig. 4 is to say that the |0〉 state is show on
the left and |+〉 = H |0〉 is shown on the right, since in both cases these states
correspond to the origin. Then in the image on the right one can clearly see
that |+〉 = 1√

2
(|0〉 + |1〉) is a superposition of |0〉 and |1〉.

The advantage of this representation is that it corresponds to a bounded set
in the complex plane and it shows “both sides” of the Bloch sphere. Thus it is
useful for drawing pictures of configurations of qubit states (see Fig. 5). It also
provides a very concise way to describe the vertices of regular polyhedra [3]. For
example, the β coefficients of qubit states corresponding to the vertices of the
octahedron, cube, and cuboctahedron are the roots of the following polynomials:

β(β − 1)(4β4 − 1) = 0, (11)

36β8 + 24β4 + 1 = 0, (12)

256β12 − 128β8 − 44β4 + 1 = 0, (13)

where the convention that |1〉 corresponds to β = 1 is used (see Fig. 5).

5 Extended complex plane representation

There is yet another way how to represent a qubit. It is very similar to the
previous one, but has an advantage that unitary operations can be described in
a simple way – as conformal maps (a map in the complex plane that preserves
local angles). However, the state space is not bounded anymore.

This representation of a qubit appeared in the context of quantum computing
in [4]. However, it has been known for some time in a different context, namely
four-dimensional geometry of Minkowsky vector space. Despite the completely
different context, I suggest [5, pp. 10] as a very good reference.

To be consistent with Sect. 3 our notation will differ from [4, 5]. Hence the
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Figure 6: The coordinate grid after the conformal transformation 1/ζ corre-
sponding to the unitary NOT gate σx.

geometrical interpretation in the next section will be somewhat awkward. 1

We used the second component β to identify a pure qubit state |ψ〉 =
(

α
β

)

in the previous section. This approach had a deficiency that all points on the
unit circle |β| = 1 correspond to the same state, namely |1〉. Let us consider a
way how to avoid this problem.

Let ψ =
(

α
β

)

be a non-zero vector in C
2. Then the ratio

ζ =
α

β
(14)

uniquely determines the “complex line” through ψ, since all points on the same
“line” have equal ζ. To tread the case when β = 0 we have to extend the
complex plane C by adding a point at infinity. The obtained set C∞ = C∪{∞}
is called extended complex plane.

For a pure qubit state (1) we have

ζ = e−iϕ cot
θ

2
. (15)

We see that this representation is not redundant, since |0〉 and |1〉 correspond to
ζ = ∞ and ζ = 0 respectively. Hence (15) provides a one-to-one correspondence
between pure qubit states and the points on the extended complex plane C∞.

Let U =
(

a b
c d

)

be a unitary matrix. Then it transforms |ψ〉 as follows:

U |ψ〉 =

(

a b
c d

) (

α
β

)

=

(

aα+ bβ
cα+ dβ

)

.

1They use e−iϕ instead of eiϕ in (1). Then (18) reads ζ = x+iy

1−z
, which corresponds to the

stereographic projection from the Bloch sphere to the extended complex plane.
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Figure 7: Octahedron, cube, and cuboctahedron in the extended complex plane
representation.

Now the new ratio ζ ′ is2

ζ ′ =
aα+ bβ

cα+ dβ
=
aζ + b

cζ + d
.

Thus U corresponds to the following transformation of ζ ∈ C∞:

f(ζ) =
aζ + b

cζ + d
, (16)

where the following conventions are used:

f

(

−d
c

)

= ∞, f(∞) =
a

c
.

Since U is unitary, detU = ad − bc 6= 0, hence f is not constant. Such f is a
special kind of conformal map called linear fractional transformation or Möbius

transformation [6, pp. 47]. It has some nice properties, for example:

• it transforms circles to circles (line is considered as a “very big” circle),

• a circle can be taken to any other by a Möbius transformation.

The conformal maps for the most common unitary operations are given in
Table 1. For example, NOT gate σx corresponds to the map f(ζ) = 1/ζ that
sends 0 to ∞ and vice versa, as expected. The way it transforms the coordinate
grid is shown in Fig. 6. The other transformations act similarly.

This representation also can be used to visualize configurations of qubit
states, but the result might be more distorted than using unit disk representation
(compare Fig. 5 and Fig. 7).

2We can divide by zero, since we work in the extended complex plane.
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Figure 8: Stereographic projection from the Bloch sphere to the extended com-
plex plane.

6 Stereographic projection

In this section we will see the connection between the Bloch sphere representa-
tion discussed in Sect. 3 and the extended complex plane.

Let us define the stereographic projection from the Bloch sphere to the
xy-plane. To find the projection of a Bloch vector ~r = (x, y, z), consider the
line connecting the North pole and ~r. Its intersection η with the xy-plane is the
projection of ~r (see Fig. 8).

To find the projection η, let us interpret ~r as (x+ iy, z) ∈ C×R ∼= R
3. Then

η is a positive multiple of x+ iy. From Fig. 9 we see that η
x+iy

= 1

1−z
, hence

η =
x+ iy

1 − z
. (17)

Observe that the North pole ~r = (0, 0, 1) projects to η = ∞. One can verify
that ζ defined in (15) is the complex conjugate of η:

ζ = η =
x− iy

1 − z
, (18)

where (x, y, z) are the coordinates of the Bloch vector (2). Therefore the stere-
ographic projection allows to switch between the two representations.

Now we can understand the geometrical meaning of the definition (15) of
ζ. From Fig. 10 one can directly see that the factor cot θ

2
corresponds to the

distance of the projection to the origin or simply the absolute value of ζ.

Unitary gate U I σx σy σz H

Conformal map f(ζ) ζ 1

ζ
− 1

ζ
−ζ ζ+1

ζ−1

Table 1: The correspondence between unitary operations and conformal maps.
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z
~r

ηx+ iy

Figure 9: The projection η of the
Bloch vector ~r = (x+ iy, z) or the ge-
ometrical meaning of equation (17).

θ θ
2

θ
2

cot θ
2

Figure 10: Geometrical interpretation
of cot θ

2
in equation (15).

7 Hopf fibration

The Bloch sphere formalism introduced in Sect. 3 can be stated in a different way
– as the Hopf fibration of the 3-dimensional sphere S3 in R

4. For an elementary
introduction to this fibration see [7]. I will follow [8, pp. 103]. First I will show
that the 3-dimensional sphere S3 can be thought as a disjoint union of circles
S1. Then I will describe a map from S3 to S2 that provides a bijection between
these circles and the points on the 2-dimensional Bloch sphere.

7.1 Three-dimensional sphere

Let us identify R
4 and C

2 in the obvious way:









x
y
z
w









∼=
(

x+ iy
z + iw

)

. (19)

Then the unit sphere S3 can be defined as

S3 =
{

ψ ∈ C
2
∣

∣ |ψ| = 1
}

.

Let µ ∈ C
2 be a unit vector (µ ∈ S3). Then the “complex line” in direction µ is

Lµ = {cµ|c ∈ C} .

Let Cµ be the intersection of Lµ and S3:

Cµ = Lµ ∩ S3 =
{

eiϕµ|ϕ ∈ R
}

. (20)

Notice that Cµ is a (non-degenerate) circle S1 on the surface of S3. Moreover,
for each µ ∈ S3 the circle Cµ is uniquely determined and contains µ. Thus one
can think of S3 as a union of circles S1.
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To visualize this, let us introduce the spherical coordinates in R
4 and use the

stereographic projection to project S3 to a more familiar space R
3. In analogy

with (2) for R
3, the coordinates of a unit vector µ ∈ R

4 can be defined as:



















x = sinα sinβ sin γ,

y = sinα sinβ cos γ,

z = sinα cosβ,

w = cosα,

(21)

where α, β ∈ [0, π] and γ ∈ [0, 2π). According to (20) the circle Cµ for
µ =

(

x+iy
z+iw

)

explicitly reads as:

Cµ = eiϕ

(

x+ iy
z + iw

)

∼=









cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ

















x
y
z
w









. (22)

In analogy with the stereographic projection (17) from S2 to C∞ discussed in
the previous section, we can generalize it as follows:









x
y
z
w









7→ 1

1 − w





x
y
z



 . (23)

To obtain a picture, it remains to choose a unit vector µ ∈ R
4 by putting

some α, β, and γ in (21), compute the circle Cµ using (22) and project it to
R

3 according to (23). As the result one obtains the space R
3 completely filled

with circles in a way that every two of them are linked. The result is shown in
Fig. 11 (the vertical line corresponds to the “circle through infinity”). If α and
β are fixed, then the circles corresponding to different γ sweep the surface of a
torus. One such torus is shown in Fig. 12.

7.2 The Hopf map

Now let us see how these circles can be mapped to the points on the Bloch
sphere S2. First let us introduce some basic vocabulary. A fibre of a map is the
set of points having the same image. For example, the fibres of the projection
in R

3 to a plane are the lines orthogonal to that plane (we call this plane base

space). Since these lines do not overlap and fill the whole space, we say that R
3

is fibred by R
1. The common way to denote this is as follows:

fibred space
fibre−→ base space.

In our case this reads as R
3 R

1

−→ R
2. Since R

3 = R
1 ×R

2, our fibration is called
trivial. The Hopf fibrations are the simplest examples of non-trivial fibrations.
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Figure 11: Stereographic projection of the S3 fibration. The tori correspond to
α = π

2
and β = k π

8
, where k ∈ {0, 1, 2, 3, 4}. When k = 0 or k = 4 the tori are

degenerate – they correspond to the blue line and circle respectively.

Figure 12: Three views of the tori swept by the red circles corresponding to
k = 1 in Fig. 11.
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Now let us construct the Hopf map S3 S
1

−→ S2. To fibre the 3-dimensional
sphere S3 with fibres S1, we need a map that sends all points from the circle Cµ

to a single point. We have already seen such a map – it is the ratio map (14)
from C

2 to C∞ that was discussed in Sect. 5:
(

x+ iy
z + iw

)

7→ x+ iy

z + iw
. (24)

It remains to get from C∞ to the base space S2. Recall equation (18) in
Sect. 6 that projects the Bloch sphere S2 to C∞. To send S3 to S2Thus we
have to compose (24) with the inverse of (18) . or the stereographic projection
composed with the complex conjugation. First notice that

ζζ =
x2 + y2

(1 − z)2
=

1 − z2

(1 − z)2
=

1 + z

1 − z
.

Then we get (see [5, pp. 11]):

x =
ζ + ζ

|ζ|2 + 1
, y = i

ζ − ζ

|ζ|2 + 1
, z =

|ζ|2 − 1

|ζ|2 + 1
. (25)

One can verify that the S3 fibration procedure described here is equivalent
to the Bloch sphere formalism discussed in Sect. 3, since the composition of (24)
and (25) acts on the pure qubit state |ψ〉 defined in (1) as follows:

(

cos θ
2

eiϕ sin θ
2

)

7→ e−iϕ cot
θ

2
7→





sin θ cosϕ
sin θ sinϕ

cos θ



 ,

and the result agrees with the Bloch vector ~r of |ψ〉 given in (2).

7.3 Generalizations

It turns out that this approach can be generalized to several qubits. The two
qubit case is described in [9] (a short summary is also given in [10]), but the
three qubit case is considered in [11] (both cases are covered also in [12]).

These generalizations use the Hopf fibrations S7 S
3

−→ S4 and S15 S
7

−→ S8 of
7-dimensional and 15-dimensional spheres, and can be described using quater-

nions, and octonions respectively. The main idea is to rewrite the coordinates
of the Bloch vector (2) of the state |ψ〉 =

(

α
β

)

as











x = 2Re(αβ),

y = 2 Im(αβ),

z = |α|2 − |β|2 .
(26)

Then one can use the Cayley-Dickson construction to construct larger division
algebras and generalize these coordinates for S4 and S8.
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These generalizations allow to capture the entanglement of composite quan-
tum systems (in the sense that separable and entangled states are mapped do
different subspaces of the base space). For example, one can iteratively apply
the Hopf fibrations to see if a three-qubit state can be decomposed as a product
of three one-qubit states. However, it has been proved that there are only four
fibrations between spheres:

S1 S
0

−→ S1, S3 S
1

−→ S2, S7 S
3

−→ S4, S15 S
7

−→ S8.

Therefore it is not clear how to generalize this idea further.
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[1] Bengtsson I., Życzkowski K., Geometry of Quantum States, Cambridge
University Press (2006).

[2] Gottesman D., Quantum Error Correction, lecture at Perimeter Insti-

tute (2007), available at http://pirsa.org/07010022.

[3] Mancinska L., Ozols M., Leung D., Ambainis A., Quantum Ran-
dom Access Codes with Shared Randomness, unpublished, available
at http://home.lanet.lv/~sd20008/RAC/RACs.htm.

[4] Lee J., Kim C.H., Lee E.K., Kim J., Lee S., Qubit geometry and confor-
mal mapping, Quantum Information Processing, 1, 1-2, 129-134 (2002),
quant-ph/0201014.

[5] Penrose R., Rindler W., Spinors and Space-Time, Vol. 1, Cambridge
University Press (1984).

[6] Conway J.B., Functions of One Complex Variable, 2nd ed., Springer-
Verlag (1978).

[7] Lynos D.W., An Elementary Introduction to the Hopf Fibration, Math-

ematics Magazine, Vol. 76, No. 2., 87-98 (2003).

[8] Thurston W.P., Three-Dimensional Geometry and Topology, Vol. 1,
Princeton University Press (1997).

[9] Mosseri R., Dandoloff R., Geometry of entangled states, Bloch spheres
and Hopf fibrations, J. Phys. A: Math. Gen. 34, 10243-10252 (2001),
quant-ph/0108137.

[10] Chruściński D., Geometric Aspects of Quantum Mechanics and Quan-
tum Entanglement, J. Phys. 30, 9-16 (2006).

[11] Bernevig B.A., Chen H., Geometry of the three-qubit state, entan-
glement and division algebras, J. Phys. A: Math. Gen. 36, 8325-8339
(2003), quant-ph/0302081.

16



[12] Mosseri R., Two-Qubit and Three-Qubit Geometry and Hopf Fi-
brations, in proceedings of “Topology in Condensed Matter”, ed.
Monastyrsky M.I., Springer-Verlag (2006), quant-ph/0310053.

17


