
On “The Computational Complexity of Linear

Optics” by Scott Aaronson and Alex Arkhipov

Maris Ozols

April 22, 2011

Contents

1 Introduction 1
1.1 Complexity theory . 2

2 Computation with non-interacting bosons 4
2.1 Model of computation . 4
2.2 Transition matrix . 5
2.3 Connection to complexity theory 7

3 Main results 8

4 Experimental feasibility 9

1 Introduction

The great promise of the field of quantum computing is that one day we
will be able to build devices that operate according to the laws of quantum
mechanics and lets us solve computational problems that are not tractable
on a classical computer. However, as of today, there is still a long way to
go before this goal can be reached, since physically implementing quantum
computers is very challenging and their computational power is not com-
pletely understood either.

The assertion that quantum computers are more powerful that classical
ones is in sharp contrast to the Church–Turing thesis—another reasonable
assumption, motivated by several decades of work that begun in the early
days of computer science. At that time mathematicians, such as Kleene,
Church, and Turing, were trying to formalize the notion of computation by

1

proposing a wide range of models, such as recursive functions, λ-calculus,
and Turing machines. However, these models turned out to be polynomially
equivalent, thus indicating that the notion of efficient computability is of a
fundamental significance in mathematics. Nowadays Turing machine has
become the “golden standard” of a model for efficient computation, and the
intuition that has resulted from this work is summarized as

The extended Church–Turing thesis. A computational problem that is
efficiently solvable by any realistic physical device, is also efficiently solvable
by a probabilistic Turing machine.

Resolving the tension between these two opposing views is a fundamen-
tal problem of modern science, and solving it would be a major scientific
breakthrough. Thus said, even a partial answer (such as the one given by
the paper [1] being discussed) gives a non-trivial insight into the problem.
From this point of view it is also important to perform experiments to gather
evidence on the either side of the argument.

Clearly, it is not possible in principle to prove the validity of the Church–
Turing thesis, since one can never be sure that all laws of physics have been
discovered. However, it is possible to disprove it or at least seriously chal-
lenge its validity, e.g., by showing that quantum algorithms can solve some
computational problems significantly faster than the best known classical
algorithm. In this way we can base our beliefs about the validity of the
Church–Turing thesis on our intuition from complexity theory about hard-
ness of certain computational problems.

A well known example of such instance is Shor’s algorithm for the prob-
lem of factoring integers. His result can be rephrased as follows:

It is not possible to efficiently simulate a quantum computer on
a classical one, unless it is possible to efficiently factor integers.

However, it is not clear how hard it is to factor on a classical computer. I
do not have a good intuition about this, but apparently a polynomial time
algorithm for factoring would be less surprising for computer scientists than
some other structural changes in complexity theory, such as collapse of the
polynomial hierarchy. To explain this better, let me give a brief introduction
to complexity theory.

1.1 Complexity theory

Typically, the type of problems studied in complexity theory are the so-called
decision problems, i.e., problems for which the algorithm has to output either

2

“yes” or “no” (e.g., the problem of checking if a given number is a prime).
The complexity of an algorithm is typically characterized by its running
time as a function of the input length (e.g., the number of bits necessary to
write down the number to be checked for primality).

The simplest complexity class P corresponds to problems that can be
solved on a classical deterministic computer in polynomial time. The class
NP of problems that can be solved in non-deterministic polynomial time can
be characterized as follows:

• for a “yes”-instance there exists an advice string that lets the algorithm
to verify in polynomial time that this is indeed a “yes”-instance;

• for a “no”-instance there is no “advice” that would fool the algorithm
in believing that this might be a “yes”-instance.

In other words, the problems in class NP can be formally described using a
single existential quantifier (∃).

Complexity classes P and NP lie at the 0th and 1st level of what is known
as the polynomial hierarchy PH: problems that can be described using the
second order logic, i.e., any finite number of existential (∃) and universal
quantifiers (∀). It is a major open problem in computer science to decide
if the complexity classes P and NP are actually different. The evidence
obtained so far seems to suggest that P 6= NP. If it turns out that P = NP,
this would be very surprising, since that would imply efficient algorithms
for many very hard problems. In particular, this would imply the collapse
of the polynomial hierarchy. For similar reasons it seems unlikely that the
polynomial hierarchy could collapse to a different level. However, there is no
such strong evidence that factoring is hard classically—this is the sense in
which [1] try to provide a stronger argument against Church–Turing thesis
than Shor’s algorithm.

Class Description

P polynomial time
NP non-deterministic polynomial time
PH polynomial hierarchy (second order logic)
BPP bounded-error probabilistic polynomial time
BQP bounded-error quantum polynomial time

Table 1: The most important complexity classes.

The complexity classes just mentioned and some other important ones
are summarized in Table 1, and the relations between them are illustrated

3

in Figure 1. Here are some well-known inclusions:

P ⊆ BPP ⊆ BQP, P ⊆ NP ⊆ PH, BPP ⊆ PH.

The first one simply says that the models of deterministic, randomized, and
quantum computation are increasingly more general. The second in essence
says that finding a solution to a computational problem (class P) is at least
as hard as guessing it and verifying its correctness (class NP), which in turn
is a special case of what is allowed by the second order logic (class PH). The
third inclusion is not obvious (it follows by Sipser–Lautemann theorem).

PH

BQP
BPPNP

P

?

Figure 1: Relations between the complexity classes from Table 1.

Interestingly, the results in paper [1] suggest that quantum computers
might have capabilities outside the polynomial hierarchy (in other words,
BQP is not contained in PH). If this indeed would be the case, it would be
very surprising, since that would mean that quantum computers can solve
problems whose solutions cannot even be verified by a classical computer
(since NP ⊆ PH). What is even more surprising, is that this would be
achieved by a model that seems to be strictly weaker than the full power
of BQP (in fact, it is not even known if one can perform universal classical
computation in this model).

2 Computation with non-interacting bosons

2.1 Model of computation

The model of computation considered in [1] is based on identical non-
interacting bosons. As a concrete example, one can consider a linear-optical
network with single-photon inputs and non-adaptive photon-number mea-
surements. Consider n photons in m modes where n ≤ m ≤ poly(n). The

4

state space of the system is spanned by computational basis states of the
form |s1, . . . , sm〉, where sk is the number of photons in the kth mode and∑m

k=1 sk = n. The total dimension of this space is M =
(
m+n−1
n−1

)
. For the

sake of definiteness, the initial state is taken to be |1n〉 = |1, . . . , 1, 0, . . . , 0〉,
i.e., the first n modes being occupied by a single photon each. The only
transformations that are allowed in this model are of the form ϕn(U), where
U ∈ U(m) is a single-photon unitary on m modes and ϕn : Mm×m → MM×M
extends the action of U from 1 to n photons. Here U can be implemented by
decomposing it into Θ(m2) two-level unitaries, known as Givens rotations,
and implementing each of them using two phase shifters and a beam splitter.
Finally, a measurement in the computational basis is performed, which gives
the number of photons in each mode. The computational problem that is
naturally solved by this model is the following:

Definition. Given n and a description of U ∈ U(m), the BosonSampling
problem is to produce samples from the probability distribution

Pr[S] := |〈S|ϕn(U)|1n〉|2. (1)

2.2 Transition matrix

Formally, the entries of the transition matrix ϕn(U) in equation (1) are
defined as follows:

Definition. If |S〉 = |s1, . . . , sm〉 and |T 〉 = |t1, . . . , tm〉 then for A ∈ Mm×m
the entries of ϕn(A) ∈ MM×M are defined as

〈S|ϕn(A)|T 〉 =
perm(AS,T)√

s1! · · · sm!t1! · · · tm!
, (2)

where AS,T is the n× n sub-matrix of A induced by rows (1s1 , 2s2 , . . . ,msm)
and columns (1t1 , 2t2 , . . . ,mtm), where ksk means that symbol k is repeated
sk times. Also, here

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i) (3)

denotes the permanent of matrix A ∈ Mn×n.

Example. Let m = 2 and A =
(
a b
c d

)
. If |S〉 = |1, 1〉 and |T 〉 = |2, 0〉 then

the corresponding tuples of indices are S = (1, 2) and T = (1, 1), thus

AS,T =

(
a a
c c

)
, 〈S|ϕ2(AS,T)|T 〉 =

perm
(
a a
c c

)
√

1! · 1! · 2! · 0!
=

2ac√
2

=
√

2ac. (4)

5

If we compute this for all basis states with n = 2 photons, we get

ϕ2 :

(
a b
c d

)
|10〉
|01〉 7→

 a2
√

2ab b2√
2ac ad+ bc

√
2bd

c2
√

2cd d2

 |20〉
|11〉
|02〉

(5)

Let us give some more intuitive explanation of the expression in equa-
tion (2). The denominator just takes care of the normalization and reflects
the fact that bosons in the same mode are indistinguishable. To interpret
the numerator, assume for simplicity that |S〉 = |T 〉 = |1, . . . , 1〉 so that
AS,T = A, and think of entries of A as probabilities. If we interpret Aij as
the probability for a photon to jump from mode i to j, then a term in equa-
tion (3) corresponding to permutation σ describes the probability of photons
being permuted according to σ. The same interpretation still works if we
have more than one photon in a mode.

The mapping ϕn defined in equation (2) has two very nice properties
that are not obvious at all from its definition:

Lemma. The mapping ϕn has the following properties:

• ϕn is a homomorphism, i.e., ϕn(A ·B) = ϕn(A) · ϕn(B);

• if U is unitary then so is ϕn(U).

These properties imply that ϕn is a unitary representation of the group
U(m). In fact, it is an irreducible representation.

Interestingly, there are alternative ways of defining the same map ϕn.
The one most commonly used in physics is in terms of polynomials of cre-
ation operators. It is based on the observation that there is a bijection
between the quantum states and homogenous polynomials. On the compu-
tational basis states this bijection is defined as

φ : |s1, s2, . . . , sm〉 7→ xs11 x
s2
2 . . . xsmm /

√
s1!s2! . . . sm!, (6)

where x1, . . . , xm are commuting variables, with the inverse given by

φ−1 : xt11 x
t2
2 . . . x

tm
m 7→ |t1, t2, . . . , tm〉

√
t1!t2! . . . tm!. (7)

Both φ and φ−1 are extended by linearity to the whole space. In addition,
we define a linear map φU corresponding to unitary U ∈ U(m) as

φU : (x1, x2, . . . , xm) 7→ (x1, x2, . . . , xm)U. (8)

6

It replaces variable xk by a linear combination
∑m

i=1 xiUik. Then we can
obtain the extension of U ∈ U(m) to n photons as ϕn(U) = φ−1 ◦ φU ◦ φ.

Another interesting thing to note is that if the variables x1, . . . , xm are
assumed to be anti-commutative (e.g., as in the case of fermions), then
instead of the permanent one obtains the determinant of the matrix:

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σ(i). (9)

2.3 Connection to complexity theory

The connection that relates the BosonSampling problem to complexity
theory is the observation that the measurement outcome probabilities of
a boson computer according to equation (2) are expressed in terms of a
permanent. A seminal result in complexity theory says that

Theorem (Valiant [2]). Computing perm(A) is #P-hard.

Here #P is the complexity class of counting problems1 where the algo-
rithm has to output the number of advices associated to a “yes” instance of
a decision problem in NP, and “#P-hard” means that it is at least as hard
as solving any other problem in the class #P.

This is in sharp contrast to the complexity of computing determinant of
a matrix in case of fermions, which can be done in time that is polynomial
in the size of the matrix (e.g., by using LU, Cholesky or QR decomposi-
tion). This striking difference has inspired a joke by computer scientist Avi
Wigderson, who apparently once said that “bosons got the harder job”.

However, the fact that the probabilities of measurement outcomes can be
expressed in terms of the permanent (see equation (2)), does not mean that
bosons actually “compute” the permanent. All that the boson computer is
doing is sampling from this probability distribution. Note that in general
this is not sufficient to estimate any particular such probability, since dif-
ferent runs of the same experiment need not have the same outcome. In
fact, it might be exponentially unlikely to obtain the desired measurement
outcome, thus in principle it may not be feasible to estimate the associated
probability. Nevertheless, one can still use results from complexity theory
to show that a polynomial time classical algorithm for the BosonSampling
problem would have significant consequences in complexity theory, such as
collapse of the polynomial hierarchy.

1The output of an algorithm for a function problem is an integer (a value of the faction)
rather than a single bit as in the case of decision problems.

7

As a side note, it is worth mentioning that Lesie Valiant is a computer
scientist and his result seemingly has nothing to do with physics. However,
the gadgets used in his proof [2] can be directly interpreted in terms of
devices used in linear optics experiments, such as phase shifters and beam
splitters. In some sense one can even say that he has abstractly rediscovered
bosons. Moreover, his result can also be seen as a consequence of the KLM
universality result [3]. Recently this connection was made explicit by Scott
Aaronson who (on the occasion of Leslie Valiant receiving Turing’s award)
completely re-derived Valiant’s proof in terms of linear optics [4].

3 Main results

This section contains a summary of the two main results of the paper.

Theorem (exact case). The exact BosonSampling problem is not effi-
ciently solvable by a classical computer, unless polynomial hierarchy col-
lapses.

Even though this result seems to be very strong, it is not entirely satis-
factory, since we require exact simulation of the boson computer. Clearly,
any physical implementation of a boson computer would not be perfect,
therefore it would not be able itself to solve the BosonSampling problem
exactly. Thus it is unfair to require that the classical computer does so.

A significant part of the paper [1] is devoted to trying to extend the
above theorem by showing the hardness even of approximately solving the
BosonSampling problem. Authors succeed in showing that this is the case,
under two conjectures about permanents of random Gaussian matrices. Here
is a non-technical version of the result:

Theorem (approximate case). If the following two conjectures are true:

1. the permanent of a random Gaussian matrix is #P-hard to approxi-
mate and

2. it is not too concentrated around 0,

then it is not possible to approximately solve the BosonSampling problem,
unless polynomial hierarchy collapses.

Both conjectures are backed up by numerical evidence, however no rig-
orous proof is known.

The proof of the above theorem contains the following technical result
that might be of independent interest, namely: any m1/6 ×m1/6 submatrix

8

of an m×m uniformly (according to the Haar measure) distributed random
unitary matrix is close to a matrix of independent identically distributed
Gaussians.

4 Experimental feasibility

Linear optics seems to be the obvious candidate platform in which one could
attempt to experimentally implement a boson computer. However, there are
alternative possibilities, such as bosonic excitations in solid-state systems.

The experiment would consist in preparing photons using single photon
sources in the |1n〉 state, using beam splitters and phase shifters to imple-
ment a transformation associated to a given m-mode unitary U , and using
photodetectors to perform the readout.

The order of parameters where the experimentally obtained evidence
could be regarded as significant is n = 10 and m = 20. However, at present
the only experiment that has been performed is the Hong-Ou-Mandel dip
which corresponds to n = 2. With the current technology it seems that the
n = 3 and n = 4 cases should be possible. Probably a somewhat unexpected
limitation is that for large values of n andm it would not anymore be possible
to verify that the measurement outcomes are consistent with predictions,
since the required amount of computation on a classical computer would
not be feasible.

The main advantages of performing experiments on a boson computer
is that such computer seems to be easier to build, compared to a full-scale
quantum computer. The main reasons are that no interactions between pairs
of bosons are needed, and that bosons are never used as qubits, so there is
no need to store them (which might be a problem in the case of photons).
Note that the absence of interactions in the boson computer does not imply
that there is no entanglement in the system. In fact, there is a certain
amount“free entanglement” due to the exchange symmetry of bosons.

The most difficult challenge that any implementation might change is
making sure that all bosons are indistinguishable, i.e., the exchange sym-
metry is preserved. For example, in a linear optics implementation one has
to make sure that all n photons arrive at the destination at the exact same
time. In addition to this one also needs good photon sources and detectors.

9

References

[1] Scott Aaronson and Alex Arkhipov. The computational complexity of
linear optics. 2010. arXiv:1011.3245.

[2] Leslie G. Valiant. The complexity of computing the permanent.
Theoretical Computer Science, 8(2):189–201, 1979. doi:10.1016/

0304-3975(79)90044-6.

[3] Emanuel Knill, Raymond Laflamme, and Gerard J. Milburn. A scheme
for efficient quantum computation with linear optics. Nature, 409:46–52,
2001. arXiv:quant-ph/0006088, doi:10.1038/35051009.

[4] Scott Aaronson. A linear-optical proof that the permanent is #P-hard.
2011. Available from: http://www.scottaaronson.com/papers/

sharp.pdf.

10

http://arxiv.org/abs/1011.3245
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://arxiv.org/abs/quant-ph/0006088
http://dx.doi.org/10.1038/35051009
http://www.scottaaronson.com/papers/sharp.pdf
http://www.scottaaronson.com/papers/sharp.pdf

	1 Introduction
	1.1 Complexity theory

	2 Computation with non-interacting bosons
	2.1 Model of computation
	2.2 Transition matrix
	2.3 Connection to complexity theory

	3 Main results
	4 Experimental feasibility

