"The Computational Complexity of Linear Optics" by Scott Aaronson and Alex Arkhipov

arXiv:1011.3245

Maris Ozols

April 21, 2011

The BIG dilemma...

The great dream
Quantum computers are more powerful than classical computers
The sad possibility
Church-Turing thesis: Everything that is efficiently computable by any physical device is efficiently computable by a Turing machine

The BIG dilemma...

The great dream
Quantum computers are more powerful than classical computers
The sad possibility
Church-Turing thesis: Everything that is efficiently computable by any physical device is efficiently computable by a Turing machine

Which one do we believe in?

The BIG dilemma...

The great dream
Quantum computers are more powerful than classical computers
The sad possibility
Church-Turing thesis: Everything that is efficiently computable by any physical device is efficiently computable by a Turing machine

Which one do we believe in?

- Shor's algorithm
\Rightarrow You can't simulate a quantum computer unless you can factor efficiently!

The BIG dilemma...

The great dream
Quantum computers are more powerful than classical computers
The sad possibility
Church-Turing thesis: Everything that is efficiently computable by any physical device is efficiently computable by a Turing machine

Which one do we believe in?

- Shor's algorithm
\Rightarrow You can't simulate a quantum computer unless you can factor efficiently!
- This result
\Rightarrow You can't simulate a quantum computer unless...

The BIG dilemma...

The great dream
Quantum computers are more powerful than classical computers
The sad possibility
Church-Turing thesis: Everything that is efficiently computable by any physical device is efficiently computable by a Turing machine

Which one do we believe in?

- Shor's algorithm \Rightarrow You can't simulate a quantum computer unless you can factor efficiently!
- This result
\Rightarrow You can't simulate a quantum computer
 unless...something bad happens...

The BIG dilemma...

The great dream
Quantum computers are more powerful than classical computers
The sad possibility
Church-Turing thesis: Everything that is efficiently computable by any physical device is efficiently computable by a Turing machine

Which one do we believe in?

- Shor's algorithm \Rightarrow You can't simulate a quantum computer unless you can factor efficiently!
- This result
\Rightarrow You can't simulate a quantum computer unless. . . something bad happens...

The BIG dilemma...

The great dream
Quantum computers are more powerful than classical computers
The sad possibility
Church-Turing thesis: Everything that is efficiently computable by any physical device is efficiently computable by a Turing machine

Which one do we believe in?

- Shor's algorithm \Rightarrow You can't simulate a quantum computer unless you can factor efficiently!
- This result
\Rightarrow You can't simulate a quantum computer
 unless...something bad happens...

The BIG dilemma...

The great dream
Quantum computers are more powerful than classical computers
The sad possibility
Church-Turing thesis: Everything that is efficiently computable by any physical device is efficiently computable by a Turing machine

Which one do we believe in?

- Shor's algorithm \Rightarrow You can't simulate a quantum computer unless you can factor efficiently!
- This result
\Rightarrow You can't simulate a quantum computer unless. . . something bad happens...

PHOTO: The scene of the devastation.

Complexity theory crash course

Complexity classes

- P - polynomial time
- NP - non-deterministic polynomial time
- PH - polynomial hierarchy (2nd order logic)
- BPP - bounded-error probabilistic polynomial time
- BQP - bounded-error quantum polynomial time

Computation with non-interacting bosons

Model of computation

- Parameters: n photons in $m=\operatorname{poly}(n)$ modes
- State space: $\operatorname{span}\left\{\left|s_{1}, \ldots, s_{m}\right\rangle: s_{k} \geq 0, \sum_{k=1}^{m} s_{k}=n\right\}$
- Initial state: $\left|1_{n}\right\rangle:=|1, \ldots, 1,0, \ldots, 0\rangle$
- Transformations: $\varphi_{n}(U)$ for any $U \in \mathrm{U}(m)$, where φ_{n} extends the action from 1 to n photons
- Measurement: the number of photons in each mode

The BosonSampling problem
Given a description of $U \in \mathrm{U}(m)$, produce samples from the probability distribution

$$
\left.\operatorname{Pr}[S]:=\left|\langle S| \varphi_{n}(U)\right| 1_{n}\right\rangle\left.\right|^{2}
$$

Transition matrix

Definition
If $|S\rangle=\left|s_{1}, \ldots, s_{m}\right\rangle$ and $|T\rangle=\left|t_{1}, \ldots, t_{m}\right\rangle$ then φ_{n} is defined as

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

where $A_{S, T}$ is the $n \times n$ matrix obtained by taking s_{i} copies of the i th row and t_{j} copies of j th column of A

Transition matrix

Definition
If $|S\rangle=\left|s_{1}, \ldots, s_{m}\right\rangle$ and $|T\rangle=\left|t_{1}, \ldots, t_{m}\right\rangle$ then φ_{n} is defined as

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

where $A_{S, T}$ is the $n \times n$ matrix obtained by taking s_{i} copies of the i th row and t_{j} copies of j th column of A

Example

$$
\left.\varphi_{2}:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)|10\rangle \left\lvert\, \begin{array}{ccc}
a^{2} & \sqrt{2} a b & b^{2} \\
\sqrt{2} a c & a d+b c & \sqrt{2} b d \\
c^{2} & \sqrt{2} c d & d^{2}
\end{array}\right.\right) \left\lvert\, \begin{aligned}
& |20\rangle \\
& |11\rangle \\
& |02\rangle
\end{aligned}\right.
$$

Transition matrix

Definition
If $|S\rangle=\left|s_{1}, \ldots, s_{m}\right\rangle$ and $|T\rangle=\left|t_{1}, \ldots, t_{m}\right\rangle$ then φ_{n} is defined as

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

where $A_{S, T}$ is the $n \times n$ matrix obtained by taking s_{i} copies of the i th row and t_{j} copies of j th column of A

Example

$$
\left.\varphi_{2}:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)|10\rangle \left\lvert\, \begin{array}{ccc}
a^{2} & \sqrt{2} a b & b^{2} \\
\sqrt{2} a c & a d+b c & \sqrt{2} b d \\
c^{2} & \sqrt{2} c d & d^{2}
\end{array}\right.\right) \left\lvert\, \begin{aligned}
& |20\rangle \\
& |11\rangle \\
& |02\rangle
\end{aligned}\right.
$$

Properties

- φ_{n} is a homomorphism: $\varphi_{n}(A \cdot B)=\varphi_{n}(A) \cdot \varphi_{n}(B)$
- if U is unitary then so is $\varphi_{n}(U)$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
a e i+g b f
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
a e i+g b f+d h c
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
a e i+g b f+d h c+g e c
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
a e i+g b f+d h c+g e c+a h f
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
a e i+g b f+d h c+g e c+a h f+d b i
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
\begin{gathered}
a e i+g b f+d h c+g e c+a h f+d b i \\
\operatorname{perm}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
\end{gathered}
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
\begin{gathered}
a e i+g b f+d h c+g e c+a h f+d b i \\
\operatorname{perm}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
\end{gathered}
$$

Definition

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
a e i+g b f+d h c+g e c+a h f+d b i
$$

$$
\operatorname{perm}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

Definition

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
\operatorname{perm}\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right)
$$

Definition

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
\operatorname{perm}\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right)
$$

Definition

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
\operatorname{perm}\left(\begin{array}{lll}
a & a & b \\
d & d & e \\
d & d & e
\end{array}\right)
$$

Definition

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Permanent

$$
\langle S| \varphi_{n}(A)|T\rangle=\frac{\operatorname{perm}\left(A_{S, T}\right)}{\sqrt{s_{1}!\cdots s_{m}!t_{1}!\cdots t_{m}!}}
$$

The magic box

$$
\operatorname{perm}\left(\begin{array}{lll}
a & a & b \\
d & d & e \\
d & d & e
\end{array}\right)
$$

Definition

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Theorem (Valiant '79)
Computing perm (A) is \#P-hard

Main results

Theorem (exact case)
The exact BosonSampling problem is not efficiently solvable by a classical computer, unless polynomial hierarchy collapses

Main results

Theorem (exact case)
The exact BosonSAmpling problem is not efficiently solvable by a classical computer, unless polynomial hierarchy collapses

Theorem (approximate case)
If the following two conjectures are true:

1. the permanent of a random Gaussian matrix is \#P-hard to approximate and
2. it is not too concentrated around 0
then it is not possible to approximately solve the
BosonSampling problem, unless polynomial hierarchy collapses

Experimental feasibility

Linear optics

- prepare photons using single photon sources
- use beam splitters and phase shifters to implement U
- use photodetectors to perform the readout
- the order of parameters: $n=10, m=20$

Experimental feasibility

Linear optics

- prepare photons using single photon sources
- use beam splitters and phase shifters to implement U
- use photodetectors to perform the readout
- the order of parameters: $n=10, m=20$

Good

- easier to build than a full-scale QC (no interaction between pairs of photons needed)
- photons are never used as qubits (no need to store them)

Experimental feasibility

Linear optics

- prepare photons using single photon sources
- use beam splitters and phase shifters to implement U
- use photodetectors to perform the readout
- the order of parameters: $n=10, m=20$

Good

- easier to build than a full-scale QC (no interaction between pairs of photons needed)
- photons are never used as qubits (no need to store them)

Problems

- need good photon sources and detectors
- all n photons must arrive at the destination at the same time

Thank you!

