Introduction to quantum walk

Maris Ozols
University of Waterloo, Institute for Quantum Computing

November 11, 2009

Introduction

States

States

Classical

Probability distribution:

$$
\begin{gathered}
p \in \mathbb{R}_{+}^{n} \\
\sum_{i=1}^{n} p_{i}=1
\end{gathered}
$$

States

Classical

Quantum

Probability distribution:

$$
\begin{gathered}
p \in \mathbb{R}_{+}^{n} \\
\sum_{i=1}^{n} p_{i}=1
\end{gathered}
$$

Wave function:

$$
\begin{gathered}
\psi \in \mathbb{C}^{n} \\
\sum_{i=1}^{n}\left|\psi_{i}\right|^{2}=1
\end{gathered}
$$

$$
\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4} \\
\psi_{5}
\end{array}\right)=
$$

States

Classical

Quantum

Probability distribution:

$$
\begin{gathered}
p \in \mathbb{R}_{+}^{n} \\
\sum_{i=1}^{n} p_{i}=1
\end{gathered}
$$

Wave function:

$$
\begin{gathered}
\psi \in \mathbb{C}^{n} \\
\sum_{i=1}^{n}\left|\psi_{i}\right|^{2}=1
\end{gathered}
$$

$p_{i}=\left|\psi_{i}\right|^{2}$

States

Classical

Quantum

Probability distribution:

$$
\begin{gathered}
p \in \mathbb{R}_{+}^{n} \\
\sum_{i=1}^{n} p_{i}=1
\end{gathered}
$$

Wave function:

$$
\begin{gathered}
\psi \in \mathbb{C}^{n} \\
\sum_{i=1}^{n}\left|\psi_{i}\right|^{2}=1
\end{gathered}
$$

$$
\begin{aligned}
p_{i} & =\left|\psi_{i}\right|^{2} \\
& \Longleftrightarrow \\
& \Longrightarrow \\
\psi_{j}= & \sqrt{p_{j}} e^{i \varphi_{j}}
\end{aligned}
$$

$$
\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4} \\
\psi_{5}
\end{array}\right)=
$$

How does a quantum walk looks like?

How does a quantum walk looks like?

How does a quantum walk looks like?

Continuous-time walks

Continuous-time walks

Classical

Master equation:

$$
\frac{d}{d t} p(t)=L p(t)
$$

Continuous-time walks

Classical

Master equation:

$$
\frac{d}{d t} p(t)=L p(t)
$$

Restrictions on L :

$$
\begin{array}{cc}
\frac{d}{d t}\|p(t)\|_{1}=0 & p(t) \geq 0 \\
\Downarrow & \Downarrow \\
\sum_{i=1}^{n} L_{i j}=0 & L_{i j} \geq 0(i \neq j)
\end{array}
$$

Continuous-time walks

Classical

Master equation:

$$
\frac{d}{d t} p(t)=L p(t)
$$

Restrictions on L :

$$
\begin{array}{cc}
\frac{d}{d t}\|p(t)\|_{1}=0 & p(t) \geq 0 \\
\Downarrow & \Downarrow \\
\sum_{i=1}^{n} L_{i j}=0 & L_{i j} \geq 0(i \neq j)
\end{array}
$$

Solution:

$$
p(t)=e^{L t} p(0)
$$

Continuous-time walks

Classical

Master equation:

$$
\frac{d}{d t} p(t)=L p(t)
$$

Quantum

Schrödinger equation:

$$
i \frac{d}{d t} \psi(t)=H \psi(t)
$$

Restrictions on L :

$$
\begin{array}{cc}
\frac{d}{d t}\|p(t)\|_{1}=0 & p(t) \geq 0 \\
\Downarrow & \Downarrow \\
\sum_{i=1}^{n} L_{i j}=0 & L_{i j} \geq 0(i \neq j)
\end{array}
$$

Solution:

$$
p(t)=e^{L t} p(0)
$$

Continuous-time walks

Classical

Master equation:

$$
\frac{d}{d t} p(t)=L p(t)
$$

Restrictions on L :

$$
\begin{array}{cc}
\frac{d}{d t}\|p(t)\|_{1}=0 & p(t) \geq 0 \\
\Downarrow & \Downarrow \\
\sum_{i=1}^{n} L_{i j}=0 & L_{i j} \geq 0(i \neq j)
\end{array}
$$

Quantum
Schrödinger equation:

$$
i \frac{d}{d t} \psi(t)=H \psi(t)
$$

Restrictions on H :

$$
\begin{gathered}
\frac{d}{d t}\|\psi(t)\|_{2}=0 \\
\Downarrow \\
H^{\dagger}=H
\end{gathered}
$$

Solution:

$$
p(t)=e^{L t} p(0)
$$

Continuous-time walks

Classical

Master equation:

$$
\frac{d}{d t} p(t)=L p(t)
$$

Restrictions on L :

$$
\begin{array}{cc}
\frac{d}{d t}\|p(t)\|_{1}=0 & p(t) \geq 0 \\
\Downarrow & \Downarrow \\
\sum_{i=1}^{n} L_{i j}=0 & L_{i j} \geq 0(i \neq j)
\end{array}
$$

Solution:

$$
p(t)=e^{L t} p(0)
$$

Quantum

Schrödinger equation:

$$
i \frac{d}{d t} \psi(t)=H \psi(t)
$$

Restrictions on H :

$$
\begin{gathered}
\frac{d}{d t}\|\psi(t)\|_{2}=0 \\
\Downarrow \\
H^{\dagger}=H
\end{gathered}
$$

Solution:

$$
\psi(t)=e^{-i H t} \psi(0)
$$

Quantum walk on the hypercube

Quantum walk on the hypercube

Problem

Solve $i \frac{d}{d t} \psi(t)=H \psi(t)$, where H is the adjacency matrix of the n-dimensional hypercube. In other words, compute $e^{-i H t}$.

Quantum walk on the hypercube
Problem
Solve $i \frac{d}{d t} \psi(t)=H \psi(t)$, where H is the adjacency matrix of the n-dimensional hypercube. In other words, compute $e^{-i H t}$.

Example ($n=5$)

Cartesian product of graphs

Definition
The Cartesian product of graphs G_{1} and G_{2} is graph $G_{1} \square G_{2}$ with

- vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$
- edges $\left(u_{1}, v\right)\left(u_{2}, v\right)$ and $\left(u, v_{1}\right)\left(u, v_{2}\right)$ for every $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$

Cartesian product of graphs

Definition
The Cartesian product of graphs G_{1} and G_{2} is graph $G_{1} \square G_{2}$ with

- vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$
- edges $\left(u_{1}, v\right)\left(u_{2}, v\right)$ and $\left(u, v_{1}\right)\left(u, v_{2}\right)$ for every $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$

Example

Cartesian product of graphs

Definition
The Cartesian product of graphs G_{1} and G_{2} is graph $G_{1} \square G_{2}$ with

- vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$
- edges $\left(u_{1}, v\right)\left(u_{2}, v\right)$ and $\left(u, v_{1}\right)\left(u, v_{2}\right)$ for every $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$

Question
How to find the adjacency matrix of $G_{1} \square G_{2}$?

Cartesian product of graphs

Definition
The Cartesian product of graphs G_{1} and G_{2} is graph $G_{1} \square G_{2}$ with

- vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$
- edges $\left(u_{1}, v\right)\left(u_{2}, v\right)$ and $\left(u, v_{1}\right)\left(u, v_{2}\right)$ for every $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$

Definition
The tensor product of matrices A and B is a block matrix

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 n} B \\
a_{21} B & a_{22} B & \ldots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} B & a_{m 2} B & \ldots & a_{m n} B
\end{array}\right)
$$

Cartesian product of graphs

Definition
The Cartesian product of graphs G_{1} and G_{2} is graph $G_{1} \square G_{2}$ with

- vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$
- edges $\left(u_{1}, v\right)\left(u_{2}, v\right)$ and $\left(u, v_{1}\right)\left(u, v_{2}\right)$ for every $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$

Definition
The tensor product of matrices A and B is a block matrix

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 n} B \\
a_{21} B & a_{22} B & \ldots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} B & a_{m 2} B & \ldots & a_{m n} B
\end{array}\right)
$$

Claim $\mathcal{A}\left(G_{1} \square G_{2}\right)=\mathcal{A}\left(G_{1}\right) \otimes I+I \otimes \mathcal{A}\left(G_{2}\right)$

Adjacency matrix of hypercube

Definition

The n-dimensional hypercube graph is $Q_{n}=\left(K_{2}\right)^{\square n}$.

Adjacency matrix of hypercube

Definition

The n-dimensional hypercube graph is $Q_{n}=\left(K_{2}\right)^{\square n}$.
Claim
Let $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\mathcal{A}\left(K_{2}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then

$$
\mathcal{A}\left(Q_{n}\right)=\sum_{i=1}^{n} X^{(i)}
$$

where $X^{(i)}=\underbrace{I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I}_{n \text { terms with } X \text { in the } i \text { th position }}$.

Adjacency matrix of hypercube

Definition

The n-dimensional hypercube graph is $Q_{n}=\left(K_{2}\right)^{\square n}$.
Claim
Let $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\mathcal{A}\left(K_{2}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then

$$
\mathcal{A}\left(Q_{n}\right)=\sum_{i=1}^{n} X^{(i)}
$$

where $X^{(i)}=\underbrace{I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I}_{n \text { terms with } X \text { in the } i \text { th position }}$.
Question
How to find $e^{-i H t}$ for $H=\mathcal{A}\left(Q_{n}\right)$?

Adjacency matrix of hypercube

Definition

The n-dimensional hypercube graph is $Q_{n}=\left(K_{2}\right)^{\square n}$.
Claim
Let $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\mathcal{A}\left(K_{2}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then

$$
\mathcal{A}\left(Q_{n}\right)=\sum_{i=1}^{n} X^{(i)}
$$

where $X^{(i)}=\underbrace{I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I}_{n \text { terms with } X \text { in the } i \text { th position }}$.
Question
How to find $e^{-i H t}$ for $H=\mathcal{A}\left(Q_{n}\right)$?
Answer (by a quantum physicist): Duh!

Adjacency matrix of hypercube

Definition

The n-dimensional hypercube graph is $Q_{n}=\left(K_{2}\right)^{\square n}$.
Claim
Let $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\mathcal{A}\left(K_{2}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then

$$
\mathcal{A}\left(Q_{n}\right)=\sum_{i=1}^{n} X^{(i)}
$$

where $X^{(i)}=\underbrace{I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I}_{n \text { terms with } X \text { in the } i \text { th position }}$.
Question
How to find $e^{-i H t}$ for $H=\mathcal{A}\left(Q_{n}\right)$?
Hints: 1. $X^{2}=I$

$$
\text { 2. } X^{(i)} X^{(j)}=X^{(j)} X^{(i)}
$$

Solution for Q_{1}

Lemma
Let $\varphi \in \mathbb{R}$ and A be a matrix such that $A^{2}=I$. Then

$$
\exp (i \varphi A)=\cos (\varphi) I+i \sin (\varphi) A
$$

Solution for Q_{1}

Lemma

Let $\varphi \in \mathbb{R}$ and A be a matrix such that $A^{2}=I$. Then

$$
\exp (i \varphi A)=\cos (\varphi) I+i \sin (\varphi) A
$$

Proof $\quad \exp (i \varphi A)=\sum_{n=0}^{\infty} \frac{(i \varphi A)^{n}}{n!}$

Solution for Q_{1}

Lemma

Let $\varphi \in \mathbb{R}$ and A be a matrix such that $A^{2}=I$. Then

$$
\begin{aligned}
\exp (i \varphi A) & =\cos (\varphi) I+i \sin (\varphi) A \\
\exp (i \varphi A) & =\sum_{n=0}^{\infty} \frac{(i \varphi A)^{n}}{n!} \\
& =\sum_{n \text { even }} \frac{(i \varphi)^{n}}{n!} I+\sum_{n \text { odd }} \frac{(i \varphi)^{n}}{n!} A
\end{aligned}
$$

Solution for Q_{1}

Lemma

Let $\varphi \in \mathbb{R}$ and A be a matrix such that $A^{2}=I$. Then

$$
\begin{aligned}
& \exp (i \varphi A)=\cos (\varphi) I+i \sin (\varphi) A \\
& \text { Proof } \exp (i \varphi A)=\sum_{n=0}^{\infty} \frac{(i \varphi A)^{n}}{n!} \\
&=\sum_{n \text { even }} \frac{(i \varphi)^{n}}{n!} I+\sum_{n \text { odd }} \frac{(i \varphi)^{n}}{n!} A \\
&=\cos (\varphi) I+i \sin (\varphi) A
\end{aligned}
$$

Solution for Q_{1}

Lemma

Let $\varphi \in \mathbb{R}$ and A be a matrix such that $A^{2}=I$. Then

$$
\exp (i \varphi A)=\cos (\varphi) I+i \sin (\varphi) A
$$

Proof $\quad \exp (i \varphi A)=\sum_{n=0}^{\infty} \frac{(i \varphi A)^{n}}{n!}$

$$
\begin{aligned}
& =\sum_{n \text { even }} \frac{(i \varphi)^{n}}{n!} I+\sum_{n \text { odd }} \frac{(i \varphi)^{n}}{n!} A \\
& =\cos (\varphi) I+i \sin (\varphi) A
\end{aligned}
$$

Result

$$
e^{-i X t}=\cos (t) I-i \sin (t) X=\left(\begin{array}{cc}
\cos t & -i \sin t \\
-i \sin t & \cos t
\end{array}\right)
$$

Solution for Q_{n}

Fact
$e^{A+B}=e^{A} e^{B}$ if $A B=B A$.

Solution for Q_{n}

Fact
$e^{A+B}=e^{A} e^{B}$ if $A B=B A$.
Result

$$
e^{-i H t}=\exp \left(-i \sum_{k=1}^{n} X^{(k)} t\right)
$$

Solution for Q_{n}

Fact
$e^{A+B}=e^{A} e^{B}$ if $A B=B A$.
Result

$$
e^{-i H t}=\exp \left(-i \sum_{k=1}^{n} X^{(k)} t\right)=\prod_{k=1}^{n} e^{-i X^{(k)} t}
$$

Solution for Q_{n}

Fact
$e^{A+B}=e^{A} e^{B}$ if $A B=B A$.
Result

$$
\begin{aligned}
e^{-i H t} & =\exp \left(-i \sum_{k=1}^{n} X^{(k)} t\right)=\prod_{k=1}^{n} e^{-i X^{(k)} t} \\
& =\prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-i X t} \otimes I \otimes \cdots \otimes I
\end{aligned}
$$

Solution for Q_{n}

Fact
$e^{A+B}=e^{A} e^{B}$ if $A B=B A$.
Result

$$
\begin{aligned}
e^{-i H t} & =\exp \left(-i \sum_{k=1}^{n} X^{(k)} t\right)=\prod_{k=1}^{n} e^{-i X^{(k)} t} \\
& =\prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-i X t} \otimes I \otimes \cdots \otimes I \\
= & \text { Look around and check if the } \\
& \text { person next to you is asleep! }
\end{aligned}
$$

Solution for Q_{n}

Fact
$e^{A+B}=e^{A} e^{B}$ if $A B=B A$.
Result

$$
\begin{aligned}
e^{-i H t} & =\exp \left(-i \sum_{k=1}^{n} X^{(k)} t\right)=\prod_{k=1}^{n} e^{-i X^{(k)} t} \\
& =\prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-i X t} \otimes I \otimes \cdots \otimes I \\
& =\bigotimes_{k=1}^{n} e^{-i X t}
\end{aligned}
$$

Solution for Q_{n}

Fact
$e^{A+B}=e^{A} e^{B}$ if $A B=B A$.
Result

$$
\begin{aligned}
e^{-i H t} & =\exp \left(-i \sum_{k=1}^{n} X^{(k)} t\right)=\prod_{k=1}^{n} e^{-i X^{(k)} t} \\
& =\prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-i X t} \otimes I \otimes \cdots \otimes I \\
& =\bigotimes_{k=1}^{n} e^{-i X t}=\left(\begin{array}{cc}
\cos t & -i \sin t \\
-i \sin t & \cos t
\end{array}\right)^{\otimes n}
\end{aligned}
$$

Solution for Q_{n}

Fact
$e^{A+B}=e^{A} e^{B}$ if $A B=B A$.

Result

$$
\begin{aligned}
e^{-i H t} & =\exp \left(-i \sum_{k=1}^{n} X^{(k)} t\right)=\prod_{k=1}^{n} e^{-i X^{(k)} t} \\
& =\prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-i X t} \otimes I \otimes \cdots \otimes I \\
& =\bigotimes_{k=1}^{n} e^{-i X t}=\left(\begin{array}{cc}
\cos t & -i \sin t \\
-i \sin t & \cos t
\end{array}\right)^{\otimes n}
\end{aligned}
$$

Note
At $t=\frac{\pi}{2}$ we have $e^{-i H t}=\left(\begin{array}{cc}0 & -i \\ -i & 0\end{array}\right)^{\otimes n}$.

Quantum walk on Q_{5}

$$
t=0
$$

Quantum walk on Q_{5}

Quantum walk on Q_{5}

$t=\pi / 4$

Quantum walk on Q_{5}

$$
t=\pi / 2
$$

Quiz

Quiz

$$
t=\pi / 4
$$

Question
How does it know where to go next from this state?

Quiz

$$
t=\pi / 4
$$

Question

How does it know where to go next from this state? (What if the walk would have started from a different vertex?)

Applications

Applications of quantum walk

Applications of quantum walk
"Glued trees" problem

$O\left(2^{N}\right)$ vs $O(N)$

Applications of quantum walk

"Glued trees" problem

$O\left(2^{N}\right)$ vs $O(N)$

Grover's algorithm

$O(N)$ vs $O(\sqrt{N})$

Applications of quantum walk

"Glued trees" problem

$O\left(2^{N}\right)$ vs $O(N)$

Grover's algorithm

$O(N)$ vs $O(\sqrt{N})$

Formula evaluation

it depends vs $O(\sqrt{N})$

Applications of quantum walk

"Glued trees" problem

$O\left(2^{N}\right)$ vs $O(N)$

Grover's algorithm

$O(N)$ vs $O(\sqrt{N})$

Formula evaluation

it depends vs $O(\sqrt{N})$

Quantization of Markov chains

$\mathrm{HT}(P, M)$ vs $\sqrt{\mathrm{HT}(P, M)}$

Thank you for your attention!

