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Quantum walk on the hypercube

Problem
Solve i%w(t) = Hy(t), where H is the adjacency matrix of the

n-dimensional hypercube. In other words, compute e~ /¢,

Example (n = 5)
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Cartesian product of graphs
Definition
The Cartesian product of graphs G and G is graph G1 0G4 with
» vertex set V(G1) x V(G2)

» edges (u1,v)(ug,v) and (u,v1)(u,ve) for every
uiug € E(G1) and vivg € E(G2)

Definition
The tensor product of matrices A and B is a block matrix

anB apsB ... a1, B
A ® B agle GQ?B . (IZTLB
amlB ameB N (ImnB

Claim A(G10Gs)=A(G1)eI+1® A(Gs)
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Adjacency matrix of hypercube

Definition
The n-dimensional hypercube graph is @, = (K2)™".

Claim
Let X =(94)=A(K2) and I =(}9). Then
i=1

where XD =7@ .- I X®I® - ®I.

n terms with X in the ith position

Question '
How to find e~ for H = A(Q,)?

Answer (by a quantum physicist): Duh!
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Adjacency matrix of hypercube

Definition
The n-dimensional hypercube graph is @, = (K2)™".

Claim
Let X =(94)=A(K2) and I =(}9). Then
i=1

where XD =7@ .- I X®I® - ®I.

n terms with X in the ith position

Question '
How to find e™t for H = A(Q,)?
Hints: 1. X2=1

2 x@x0U) = xU) x @)
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Solution for )y

Lemma
Let ¢ ¢ R and A be a matrix such that A% = I. Then

exp(ipA) = cos(p)I +isin(p)A

o0 N A n
Proof exp(ipA) = ) (wn‘)
n=0 :
(ip)" (i)
= 1
n;en n! n;ﬂd n!
=cos(p)I +isin(p)A

Result

e Xt = cos(t)I —isin(t)X = ( cost smt)

—isint  cost
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Solution for @),

Fact
eAB = eAeB if AB = BA.

Result

—iHt R (k) T Lix )y
e = exp —ZZX t =He
k=1 k=1

n .
=[]Ie0leec™ole oI
k=1

= Look around and check if the
person next to you is asleep!
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Solution for @),

Fact

eA+B _

Result

Note

Att=75

eeB if AB=BA.
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n .
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.. n
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k=1

we have e it = ( 0 ff')®n.
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Question
How does it know where to go next from this state?
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Quiz

Question
How does it know where to go next from this state?
(What if the walk would have started from a different vertex?)
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Applications of quantum walk

“Glued trees” problem Grover's algorithm

0(2N) vs O(N) O(N) vs O(V/N)

Formula evaluation Quantization of Markov chains

W S " \
o= O
randomized algorithm quantum algorithm

it depends vs O(\/N) HT(P,M) vs JHT(P,M)

Applications
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Thank you for your attention!
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