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Classical
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Quantum
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How does a quantum walk looks like?
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Continuous-time walks

Classical

Master equation:

d

dt
p(t) = Lp(t)

Quantum

Schrödinger equation:

i
d

dt
ψ(t) =Hψ(t)

Restrictions on L:

d
dt ∥p(t)∥1 = 0 p(t) ≥ 0

⇓ ⇓
∑ni=1Lij = 0 Lij ≥ 0 (i ≠ j)

Restrictions on H:

d
dt ∥ψ(t)∥2 = 0

⇓
H� =H

Solution:

p(t) = eLtp(0)

Solution:

ψ(t) = e−iHtψ(0)
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Quantum walk on the hypercube
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Quantum walk on the hypercube

Problem
Solve i ddtψ(t) =Hψ(t), where H is the adjacency matrix of the

n-dimensional hypercube. In other words, compute e−iHt.

Example (n = 5)
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Cartesian product of graphs

Definition
The Cartesian product of graphs G1 and G2 is graph G1 ◻G2 with

▸ vertex set V (G1) × V (G2)
▸ edges (u1, v)(u2, v) and (u, v1)(u, v2) for every
u1u2 ∈ E(G1) and v1v2 ∈ E(G2)
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Cartesian product of graphs

Definition
The Cartesian product of graphs G1 and G2 is graph G1 ◻G2 with

▸ vertex set V (G1) × V (G2)
▸ edges (u1, v)(u2, v) and (u, v1)(u, v2) for every
u1u2 ∈ E(G1) and v1v2 ∈ E(G2)

Question
How to find the adjacency matrix of G1 ◻G2?
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▸ vertex set V (G1) × V (G2)
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Adjacency matrix of hypercube

Definition
The n-dimensional hypercube graph is Qn = (K2)◻n.

Claim
Let X = ( 0 1

1 0 ) = A(K2) and I = ( 1 0
0 1 ). Then

A(Qn) =
n

∑
i=1
X(i)

where X(i) = I ⊗ ⋅ ⋅ ⋅ ⊗ I ⊗X ⊗ I ⊗ ⋅ ⋅ ⋅ ⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n terms with X in the ith position

.

Question
How to find e−iHt for H = A(Qn)?

9



Introduction Quantum walk on the hypercube Applications

Adjacency matrix of hypercube

Definition
The n-dimensional hypercube graph is Qn = (K2)◻n.

Claim
Let X = ( 0 1

1 0 ) = A(K2) and I = ( 1 0
0 1 ). Then

A(Qn) =
n

∑
i=1
X(i)

where X(i) = I ⊗ ⋅ ⋅ ⋅ ⊗ I ⊗X ⊗ I ⊗ ⋅ ⋅ ⋅ ⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n terms with X in the ith position

.

Question
How to find e−iHt for H = A(Qn)?

9



Introduction Quantum walk on the hypercube Applications

Adjacency matrix of hypercube

Definition
The n-dimensional hypercube graph is Qn = (K2)◻n.

Claim
Let X = ( 0 1

1 0 ) = A(K2) and I = ( 1 0
0 1 ). Then

A(Qn) =
n

∑
i=1
X(i)

where X(i) = I ⊗ ⋅ ⋅ ⋅ ⊗ I ⊗X ⊗ I ⊗ ⋅ ⋅ ⋅ ⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n terms with X in the ith position

.

Question
How to find e−iHt for H = A(Qn)?

9



Introduction Quantum walk on the hypercube Applications

Adjacency matrix of hypercube

Definition
The n-dimensional hypercube graph is Qn = (K2)◻n.

Claim
Let X = ( 0 1

1 0 ) = A(K2) and I = ( 1 0
0 1 ). Then

A(Qn) =
n

∑
i=1
X(i)

where X(i) = I ⊗ ⋅ ⋅ ⋅ ⊗ I ⊗X ⊗ I ⊗ ⋅ ⋅ ⋅ ⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n terms with X in the ith position

.

Question
How to find e−iHt for H = A(Qn)?
Answer (by a quantum physicist): Duh!
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Adjacency matrix of hypercube

Definition
The n-dimensional hypercube graph is Qn = (K2)◻n.

Claim
Let X = ( 0 1

1 0 ) = A(K2) and I = ( 1 0
0 1 ). Then

A(Qn) =
n

∑
i=1
X(i)

where X(i) = I ⊗ ⋅ ⋅ ⋅ ⊗ I ⊗X ⊗ I ⊗ ⋅ ⋅ ⋅ ⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n terms with X in the ith position

.

Question
How to find e−iHt for H = A(Qn)?
Hints: 1. X2 = I

2. X(i)X(j) =X(j)X(i)
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Solution for Q1

Lemma
Let ϕ ∈ R and A be a matrix such that A2 = I. Then

exp(iϕA) = cos(ϕ)I + i sin(ϕ)A

Proof exp(iϕA) =
∞
∑
n=0

(iϕA)n

n!

= ∑
n even

(iϕ)n

n!
I + ∑

n odd

(iϕ)n

n!
A

= cos(ϕ)I + i sin(ϕ)A

Result

e−iXt = cos(t)I − i sin(t)X = ( cos t −i sin t
−i sin t cos t

)

10
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Solution for Qn

Fact
eA+B = eAeB if AB = BA.

Result

e−iHt = exp(−i
n

∑
k=1

X(k)t)

=
n

∏
k=1

e−iX
(k)t

=
n

∏
k=1

I ⊗⋯⊗ I ⊗ e−iXt ⊗ I ⊗⋯⊗ I

=
n

⊗
k=1

e−iXt = ( cos t −i sin t
−i sin t cos t

)
⊗n

Note
At t = π

2 we have e−iHt = ( 0 −i−i 0 )
⊗n

.

11

= Look around and check if the
person next to you is asleep!
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e−iHt = exp(−i
n

∑
k=1

X(k)t) =
n

∏
k=1

e−iX
(k)t

=
n

∏
k=1

I ⊗⋯⊗ I ⊗ e−iXt ⊗ I ⊗⋯⊗ I

=
n

⊗
k=1

e−iXt

= ( cos t −i sin t
−i sin t cos t

)
⊗n

Note
At t = π

2 we have e−iHt = ( 0 −i−i 0 )
⊗n

.
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Quantum walk on Q5

t = 0
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Quantum walk on Q5

t = π/4
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Quantum walk on Q5
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Quantum walk on Q5

t = π/2
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Quiz

t = π/4

Question
How does it know where to go next from this state?
(What if the walk would have started from a different vertex?)
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Applications of quantum walk

“Glued trees” problem Grover’s algorithm

O(2N) vs O(N) O(N) vs O(
√
N)

Formula evaluation Quantization of Markov chains

1 1

AND 0

1 0 0

OR

AND

1

1 0

OR

AND

AND

Þ

randomized algorithm quantum algorithm

it depends vs O(
√
N) HT(P,M) vs

√
HT(P,M)
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Thank you for your attention!
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