Introduction to quantum walk

Maris Ozols

University of Waterloo, Institute for Quantum Computing

November 11, 2009

Introduction

Classical

Probability distribution:

$$p \in \mathbb{R}^n_+$$

 $\sum_{i=1}^n p_i = 1$

Classical

Probability distribution:

$$p \in \mathbb{R}^{n}_{+}$$
$$\sum_{i=1}^{n} p_{i} = 1$$

Quantum

Wave function:

 $\psi \in \mathbb{C}^n$

$$\sum_{i=1}^{n} |\psi_i|^2 = 1$$

$$\begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \\ \psi_5 \end{pmatrix} = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$$

Classical

Probability distribution:

Wave function:

 $\psi \in \mathbb{C}^n$

$$\sum_{i=1}^{n} |\psi_i|^2 = 1$$

Classical

Probability distribution:

 $p \in \mathbb{R}^n_+$

Quantum

Wave function:

 $\sum_{i=1}^{n} |\psi_i|^2 = 1$

 $\psi \in \mathbb{C}^n$

How does a quantum walk looks like?

How does a quantum walk looks like?

How does a quantum walk looks like?

Classical

Master equation:

$$\frac{d}{dt}p(t) = Lp(t)$$

Classical

Master equation:

$$\frac{d}{dt}p(t) = Lp(t)$$

Restrictions on L:

Classical

Master equation:

$$\frac{d}{dt}p(t) = Lp(t)$$

Restrictions on L:

$$\begin{array}{ccc} \frac{d}{dt} \| p(t) \|_1 = 0 & p(t) \ge 0 \\ & \downarrow & \downarrow \\ \sum_{i=1}^n L_{ij} = 0 & L_{ij} \ge 0 \ (i \ne j) \end{array}$$

Solution:

$$p(t) = e^{Lt} p(0)$$

Classical

Master equation:

$$\frac{d}{dt}p(t) = Lp(t)$$

Quantum

Schrödinger equation:

$$i\frac{d}{dt}\psi(t) = H\psi(t)$$

Restrictions on L:

$$\begin{array}{ccc} \frac{d}{dt} \| p(t) \|_1 = 0 & p(t) \ge 0 \\ & \downarrow & \downarrow \\ \sum_{i=1}^n L_{ij} = 0 & L_{ij} \ge 0 \ (i \neq j) \end{array}$$

Solution:

$$p(t) = e^{Lt} p(0)$$

Classical

Master equation:

$$\frac{d}{dt}p(t) = Lp(t)$$

Restrictions on L:

Solution:

 $p(t) = e^{Lt} p(0)$

Quantum

Schrödinger equation:

$$irac{d}{dt}\psi(t)$$
 = $H\psi(t)$

Restrictions on H:

$$\begin{aligned} \frac{d}{dt} \|\psi(t)\|_2 &= 0 \\ \downarrow \\ H^{\dagger} &= H \end{aligned}$$

Classical

Master equation:

$$\frac{d}{dt}p(t) = Lp(t)$$

Restrictions on L:

Solution:

 $p(t) = e^{Lt} p(0)$

Quantum

Schrödinger equation:

$$irac{d}{dt}\psi(t)$$
 = $H\psi(t)$

Restrictions on H:

$$\frac{\frac{d}{dt} \|\psi(t)\|_2 = 0}{\underset{H^{\dagger} = H}{\Downarrow}}$$

Solution: $\psi(t) = e^{-iHt}\psi(0)$

Quantum walk on the hypercube

Quantum walk on the hypercube

Problem

Solve $i\frac{d}{dt}\psi(t) = H\psi(t)$, where H is the adjacency matrix of the *n*-dimensional hypercube. In other words, compute e^{-iHt} .

Quantum walk on the hypercube

Problem Solve $i\frac{d}{dt}\psi(t) = H\psi(t)$, where H is the adjacency matrix of the n-dimensional hypercube. In other words, compute e^{-iHt} .

Example (n = 5)

Definition

The Cartesian product of graphs G_1 and G_2 is graph $G_1 \square G_2$ with

- vertex set $V(G_1) \times V(G_2)$
- edges $(u_1, v)(u_2, v)$ and $(u, v_1)(u, v_2)$ for every $u_1u_2 \in E(G_1)$ and $v_1v_2 \in E(G_2)$

Definition

The Cartesian product of graphs G_1 and G_2 is graph $G_1 \square G_2$ with

- vertex set $V(G_1) \times V(G_2)$
- edges $(u_1, v)(u_2, v)$ and $(u, v_1)(u, v_2)$ for every $u_1u_2 \in E(G_1)$ and $v_1v_2 \in E(G_2)$

Example

Definition

The Cartesian product of graphs G_1 and G_2 is graph $G_1 \square G_2$ with

- vertex set $V(G_1) \times V(G_2)$
- edges $(u_1, v)(u_2, v)$ and $(u, v_1)(u, v_2)$ for every $u_1u_2 \in E(G_1)$ and $v_1v_2 \in E(G_2)$

Question

How to find the adjacency matrix of $G_1 \square G_2$?

Definition

The Cartesian product of graphs G_1 and G_2 is graph $G_1 \square G_2$ with

- vertex set $V(G_1) \times V(G_2)$
- edges $(u_1, v)(u_2, v)$ and $(u, v_1)(u, v_2)$ for every $u_1u_2 \in E(G_1)$ and $v_1v_2 \in E(G_2)$

Definition

The tensor product of matrices A and B is a block matrix

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{pmatrix}$$

Definition

The Cartesian product of graphs G_1 and G_2 is graph $G_1 \square G_2$ with

- vertex set $V(G_1) \times V(G_2)$
- edges $(u_1, v)(u_2, v)$ and $(u, v_1)(u, v_2)$ for every $u_1u_2 \in E(G_1)$ and $v_1v_2 \in E(G_2)$

Definition

The tensor product of matrices A and B is a block matrix

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{pmatrix}$$

Claim $\mathcal{A}(G_1 \Box G_2) = \mathcal{A}(G_1) \otimes I + I \otimes \mathcal{A}(G_2)$

Definition

The *n*-dimensional hypercube graph is $Q_n = (K_2)^{\Box n}$.

Definition The *n*-dimensional hypercube graph is $Q_n = (K_2)^{\Box n}$.

Claim
Let
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \mathcal{A}(K_2)$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then

$$\mathcal{A}(Q_n) = \sum_{i=1}^n X^{(i)}$$

where
$$X^{(i)} = \underbrace{I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I}_{n \text{ terms with } X \text{ in the } i\text{th position}}$$
.

Definition The *n*-dimensional hypercube graph is $Q_n = (K_2)^{\Box n}$.

Claim
Let
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \mathcal{A}(K_2)$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then

$$\mathcal{A}(Q_n) = \sum_{i=1}^n X^{(i)}$$

where
$$X^{(i)} = \underbrace{I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I}_{n \text{ terms with } X \text{ in the } i\text{th position}}$$
.

Question How to find e^{-iHt} for $H = \mathcal{A}(Q_n)$?

Definition The *n*-dimensional hypercube graph is $Q_n = (K_2)^{\Box n}$.

Claim
Let
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \mathcal{A}(K_2)$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then

$$\mathcal{A}(Q_n) = \sum_{i=1}^n X^{(i)}$$

where
$$X^{(i)} = \underbrace{I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I}_{n \text{ terms with } X \text{ in the } i\text{th position}}$$
.

Question

How to find e^{-iHt} for $H = \mathcal{A}(Q_n)$? Answer (by a quantum physicist): Duh!

Definition The *n*-dimensional hypercube graph is $Q_n = (K_2)^{\Box n}$.

Claim
Let
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \mathcal{A}(K_2)$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then

$$\mathcal{A}(Q_n) = \sum_{i=1}^n X^{(i)}$$

where
$$X^{(i)} = \underbrace{I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I}_{n \text{ terms with } X \text{ in the } i\text{th position}}$$
.

Question

How to find e^{-iHt} for $H = \mathcal{A}(Q_n)$? Hints: 1. $X^2 = I$ 2. $X^{(i)}X^{(j)} = X^{(j)}X^{(i)}$

Lemma Let $\varphi \in \mathbb{R}$ and A be a matrix such that $A^2 = I$. Then

```
\exp(i\varphi A) = \cos(\varphi)I + i\sin(\varphi)A
```

Lemma

Let $\varphi \in \mathbb{R}$ and A be a matrix such that $A^2 = I$. Then

Proof

$$\exp(i\varphi A) = \cos(\varphi)I + i\sin(\varphi)A$$

$$\exp(i\varphi A) = \sum_{n=0}^{\infty} \frac{(i\varphi A)^n}{n!}$$

Lemma

Let $\varphi \in \mathbb{R}$ and A be a matrix such that $A^2 = I$. Then

Proof

$$\exp(i\varphi A) = \cos(\varphi)I + i\sin(\varphi)A$$

$$\exp(i\varphi A) = \sum_{n=0}^{\infty} \frac{(i\varphi A)^n}{n!}$$

$$= \sum_{n \text{ even}} \frac{(i\varphi)^n}{n!}I + \sum_{n \text{ odd}} \frac{(i\varphi)^n}{n!}A$$

Lemma

Let $\varphi \in \mathbb{R}$ and A be a matrix such that $A^2 = I$. Then

Proof

$$\exp(i\varphi A) = \cos(\varphi)I + i\sin(\varphi)A$$

$$\exp(i\varphi A) = \sum_{n=0}^{\infty} \frac{(i\varphi A)^n}{n!}$$

$$= \sum_{n \text{ even}} \frac{(i\varphi)^n}{n!}I + \sum_{n \text{ odd}} \frac{(i\varphi)^n}{n!}A$$

$$= \cos(\varphi)I + i\sin(\varphi)A$$

Lemma

Let $\varphi \in \mathbb{R}$ and A be a matrix such that A^2 = I. Then

Proof

$$\exp(i\varphi A) = \cos(\varphi)I + i\sin(\varphi)A$$

$$\exp(i\varphi A) = \sum_{n=0}^{\infty} \frac{(i\varphi A)^n}{n!}$$

$$= \sum_{n \text{ even}} \frac{(i\varphi)^n}{n!}I + \sum_{n \text{ odd}} \frac{(i\varphi)^n}{n!}A$$

$$= \cos(\varphi)I + i\sin(\varphi)A$$

$$e^{-iXt} = \cos(t)I - i\sin(t)X = \begin{pmatrix} \cos t & -i\sin t \\ -i\sin t & \cos t \end{pmatrix}$$

Fact
$$e^{A+B} = e^A e^B$$
 if $AB = BA$.

Fact
$$e^{A+B} = e^A e^B$$
 if $AB = BA$.

$$e^{-iHt} = \exp\left(-i\sum_{k=1}^{n} X^{(k)}t\right)$$

Fact
$$e^{A+B} = e^A e^B$$
 if $AB = BA$.

$$e^{-iHt} = \exp\left(-i\sum_{k=1}^{n} X^{(k)}t\right) = \prod_{k=1}^{n} e^{-iX^{(k)}t}$$

Fact
$$e^{A+B} = e^A e^B$$
 if $AB = BA$.

$$e^{-iHt} = \exp\left(-i\sum_{k=1}^{n} X^{(k)}t\right) = \prod_{k=1}^{n} e^{-iX^{(k)}t}$$
$$= \prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-iXt} \otimes I \otimes \cdots \otimes I$$

Fact
$$e^{A+B} = e^A e^B$$
 if $AB = BA$.

Result

$$e^{-iHt} = \exp\left(-i\sum_{k=1}^{n} X^{(k)}t\right) = \prod_{k=1}^{n} e^{-iX^{(k)}t}$$
$$= \prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-iXt} \otimes I \otimes \cdots \otimes I$$

= Look around and check if the person next to you is asleep!

Fact
$$e^{A+B} = e^A e^B$$
 if $AB = BA$.

$$e^{-iHt} = \exp\left(-i\sum_{k=1}^{n} X^{(k)}t\right) = \prod_{k=1}^{n} e^{-iX^{(k)}t}$$
$$= \prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-iXt} \otimes I \otimes \cdots \otimes I$$
$$= \bigotimes_{k=1}^{n} e^{-iXt}$$

Fact
$$e^{A+B} = e^A e^B$$
 if $AB = BA$.

$$e^{-iHt} = \exp\left(-i\sum_{k=1}^{n} X^{(k)}t\right) = \prod_{k=1}^{n} e^{-iX^{(k)}t}$$
$$= \prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-iXt} \otimes I \otimes \cdots \otimes I$$
$$= \bigotimes_{k=1}^{n} e^{-iXt} = \begin{pmatrix}\cos t & -i\sin t\\ -i\sin t & \cos t\end{pmatrix}^{\otimes n}$$

Fact
$$e^{A+B} = e^A e^B$$
 if $AB = BA$.

$$e^{-iHt} = \exp\left(-i\sum_{k=1}^{n} X^{(k)}t\right) = \prod_{k=1}^{n} e^{-iX^{(k)}t}$$
$$= \prod_{k=1}^{n} I \otimes \cdots \otimes I \otimes e^{-iXt} \otimes I \otimes \cdots \otimes I$$
$$= \bigotimes_{k=1}^{n} e^{-iXt} = \begin{pmatrix}\cos t & -i\sin t\\ -i\sin t & \cos t\end{pmatrix}^{\otimes n}$$

Note
At
$$t = \frac{\pi}{2}$$
 we have $e^{-iHt} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}^{\otimes n}$.

t = 0

 $t = \pi/4$

 $t = \pi/2$

Quiz

 $t = \pi/4$

Question

How does it know where to go next from this state?

Quiz

 $t = \pi/4$

Question

How does it know where to go next from this state? (What if the walk would have started from a different vertex?)

Applications

Applications

Applications of quantum walk

Grover's algorithm

 $O(2^N)$ vs O(N)

Formula evaluation

Grover's algorithm


```
O(2^N) vs O(N)
```

Grover's algorithm

Formula evaluation

Quantization of Markov chains

quantum algorithm

 $\operatorname{HT}(P,M)$ vs $\sqrt{\operatorname{HT}(P,M)}$

Thank you for your attention!

