Regular Polytopes

Laura Mancinska

University of Waterloo,
Department of C&O

January 23, 2008
How many regular polytopes are there in n dimensions?
Outline

How many regular polytopes are there in n dimensions?

- Definitions and examples
- Platonic solids
 - Why only five?
 - How to describe them?
- Regular polytopes in 4 dimensions
- Regular polytopes in higher dimensions
Polytope is the general term of the sequence “point, segment, polygon, polyhedron,...”
Polytope is the general term of the sequence “point, segment, polygon, polyhedron,...”

Definition

A polytope in \mathbb{R}^n is a finite, convex region enclosed by a finite number of hyperplanes. We denote it by Π_n.
Polytope is the general term of the sequence “point, segment, polygon, polyhedron,…”

Definition

A **polytope** in \mathbb{R}^n is a finite, convex region enclosed by a finite number of hyperplanes. We denote it by Π_n.

Examples $n = 0, 1, 2, 3, 4$.
Definition

Regular polytope is a polytope $\Pi_n \ (n \geq 3)$ with

1. regular facets
2. regular vertex figures
Definition

Regular polytope is a polytope $\Pi_n \ (n \geq 3)$ with

1. regular facets
2. regular vertex figures

We define all Π_0 and Π_1 to be regular. The regularity of Π_2 is understood in the usual sense.
Definition

Regular polytope is a polytope Π_n ($n \geq 3$) with

1. regular facets
2. regular vertex figures

We define all Π_0 and Π_1 to be regular. The regularity of Π_2 is understood in the usual sense.

Vertex figure at vertex v is a Π_{n-1} obtained by joining the midpoints of adjacent edges incident to v.
Definition

Regular polytope is a polytope Π_n ($n \geq 3$) with

1. regular facets
2. regular vertex figures

We define all Π_0 and Π_1 to be regular. The regularity of Π_2 is understood in the usual sense.

Vertex figure at vertex v is a Π_{n-1} obtained by joining the midpoints of adjacent edges incident to v.
Star-polygons

\{\frac{5}{2}\} \quad \{\frac{7}{2}\} \quad \{\frac{7}{3}\}

\{\frac{8}{3}\} \quad \{\frac{9}{2}\} \quad \{\frac{9}{4}\}
Kepler-Poinsot solids

\{5, \frac{5}{2}\} \quad \{3, \frac{5}{2}\}

\{\frac{5}{2}, 5\} \quad \{\frac{5}{2}, 3\}
Two dimensional case

In 2 dimensions there is an infinite number of regular polytopes (polygons).

{3} {4} {5} {6}
{7} {8} {9} {10}
Necessary condition in 3D

Polyhedron \(\{p, q\}\)

- **Faces** of polyhedron are **polygons** \(\{p\}\)
- **Vertex figures** are **polygons** \(\{q\}\). Note that this means that exactly \(q\) faces meet at each vertex.
Necessary condition in 3D

Polyhedron \(\{p, q\} \)

- **Faces** of polyhedron are polygons \(\{p\} \)
- **Vertex figures** are polygons \(\{q\} \). Note that this means that exactly \(q \) faces meet at each vertex.

\[
\left(\pi - \frac{2\pi}{p} \right) q < 2\pi
\]
Polyhedron \(\{p, q\} \)

- **Faces** of polyhedron are polygons \(\{p\} \)
- **Vertex figures** are polygons \(\{q\} \). Note that this means that exactly \(q \) faces meet at each vertex.

\[
\left(\pi - \frac{2\pi}{p} \right) q < 2\pi
\]

\[
1 - \frac{2}{p} < \frac{2}{q}
\]
Polyhedron \(\{p, q\} \)

- **Faces** of polyhedron are polygons \(\{p\} \)
- **Vertex figures** are polygons \(\{q\} \). Note that this means that exactly \(q \) faces meet at each vertex.

\[
\left(\pi - \frac{2\pi}{p} \right) q < 2\pi \\
1 - \frac{2}{p} < \frac{2}{q} \\
\frac{1}{2} < \frac{1}{p} + \frac{1}{q}
\]
Solutions of the inequality

Inequality
- Faces are polygons $\{p\}$
- Exactly q faces meet at each vertex

$$\frac{1}{2} < \frac{1}{p} + \frac{1}{q}$$
Solutions of the inequality

Inequality

- Faces are polygons \(\{p\} \)
- Exactly \(q \) faces meet at each vertex

\[
\frac{1}{2} < \frac{1}{p} + \frac{1}{q}
\]

Solutions

<table>
<thead>
<tr>
<th>(p = 3)</th>
<th>(p = 4)</th>
<th>(p = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solutions of the inequality

Inequality
- Faces are polygons \(\{p\} \)
- Exactly \(q \) faces meet at each vertex
 \[
 \frac{1}{2} < \frac{1}{p} + \frac{1}{q}
 \]

Solutions

<table>
<thead>
<tr>
<th>(p = 3)</th>
<th>(p = 4)</th>
<th>(p = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q = 3, 4, 5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solutions of the inequality

Inequality

- Faces are polygons \(\{p\} \)
- Exactly \(q \) faces meet at each vertex

\[
\frac{1}{2} < \frac{1}{p} + \frac{1}{q}
\]

Solutions

<table>
<thead>
<tr>
<th>(p = 3)</th>
<th>(p = 4)</th>
<th>(p = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q = 3, 4, 5)</td>
<td>(q = 3)</td>
<td>(q = 3)</td>
</tr>
</tbody>
</table>
Solutions of the inequality

Inequality

- Faces are polygons \(\{p\} \)
- Exactly \(q \) faces meet at each vertex

\[
\frac{1}{2} < \frac{1}{p} + \frac{1}{q}
\]

Solutions

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>(3, 4, 5)</td>
</tr>
<tr>
<td>(4)</td>
<td>(3)</td>
</tr>
<tr>
<td>(5)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

But do the corresponding polyhedrons really exist?
\{p, q\} = \{4, 3\}
Cube

\{p, q\} = \{4, 3\}

(±1, ±1, ±1)
\{p, q\} = \{3, 4\}
Octahedron

\{p, q\} = \{3, 4\}

(\pm 1, 0, 0)
(0, \pm 1, 0)
(0, 0, \pm 1)
\{p, q\} = \{3, 3\}
Tetrahedron

\[\{p, q\} = \{3, 3\} \]
Tetrahedron

\(\{p, q\} = \{3, 3\} \)

\((+1, +1, +1) \)
\((+1, -1, -1) \)
\((-1, +1, -1) \)
\((-1, -1, +1) \)
\(\{p, q\} = \{3, 5\} \)
Icosahedron

\[\{p, q\} = \{3, 5\} \]
Icosahedron

\[\{p, q\} = \{3, 5\} \]

where

\[\tau = \frac{1 + \sqrt{5}}{2} \]

(0, ±τ, ±1)

(±1, 0, ±τ)

(±τ, ±1, 0)

where

\[\tau = \frac{1 + \sqrt{5}}{2} \]
\{p, q\} = \{5, 3\}
Dodecahedron

\{p, q\} = \{5, 3\}
Dodecahedron

\[\{ p, q \} = \{5, 3\} \]

\(\pm (1, 1, 1) \)
\((0, \pm \tau, \pm \frac{1}{\tau}) \)
\((\pm \frac{1}{\tau}, 0, \pm \tau) \)
\((\pm \tau, \pm \frac{1}{\tau}, 0) \)

where

\[\tau = \frac{1 + \sqrt{5}}{2} \]
Five Platonic solids

- Cube: \(\{4, 3\}\)
- Tetrahedron: \(\{3, 3\}\)
- Icosahedron: \(\{3, 5\}\)
- Octahedron: \(\{3, 4\}\)
- Dodecahedron: \(\{5, 3\}\)
Schläfli symbol

{6}

{3, 4}
Schläfli symbol

Desired properties of a Schläfli symbol of a regular polytope Π_n

1. Schläfli symbol is an ordered set of $n - 1$ natural numbers
Schläfli symbol

Desired properties of a Schläfli symbol of a regular polytope Π_n

1. Schläfli symbol is an **ordered set** of $n-1$ natural numbers

2. If Π_n has Schläfli symbol $\{k_1, k_2 \ldots, k_{n-1}\}$, then its
 - Facets have Schläfli symbol $\{k_1, k_2 \ldots, k_{n-2}\}$.
 - Vertex figures have Schläfli symbol $\{k_2, k_3 \ldots, k_{n-1}\}$.
Claim

Vertex figure of a facet is a facet of a vertex figure.
Claim

Vertex figure of a facet is a facet of a vertex figure.

If Π_4 is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{v, r\}$
Claim

Vertex figure of a facet is a facet of a vertex figure.

If Π_4 is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{v, r\}$
Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.

If Π_4 is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{q, r\}$
Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.

If Π_4 is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{q, r\}$

We define the Schläfli symbol of Π_4 to be $\{p, q, r\}$.
Claim

Vertex figure of a facet is a facet of a vertex figure.

If \(\Pi_4 \) is a regular polytope, then it has

- 3-dimensional facets \(\{p, q\} \)
- 3-dimensional vertex figures \(\{q, r\} \)

We define the Schläfli symbol of \(\Pi_4 \) to be \(\{p, q, r\} \).

In general if \(\Pi_n \) is a regular polytope, then it has

- facets \(\{k_1, k_2, \ldots, k_{n-2}\} \)
- vertex figures \(\{k_2, \ldots, k_{n-2}, k_{n-1}\} \)
Claim

Vertex figure of a facet is a facet of a vertex figure.

If Π_4 is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{q, r\}$

We define the Schlafli symbol of Π_4 to be $\{p, q, r\}$.

In general if Π_n is a regular polytope, then it has

- facets $\{k_1, k_2, \ldots, k_{n-2}\}$
- vertex figures $\{k_2, \ldots, k_{n-2}, k_{n-1}\}$
Claim

Vertex figure of a facet is a facet of a vertex figure.

If \(\Pi_4 \) is a regular polytope, then it has
- 3-dimensional facets \(\{p, q\} \)
- 3-dimensional vertex figures \(\{q, r\} \)

We define the Schlafli symbol of \(\Pi_4 \) to be \(\{p, q, r\} \).

In general if \(\Pi_n \) is a regular polytope, then it has
- facets \(\{k_1, k_2, \ldots, k_{n-2}\} \)
- vertex figures \(\{k_2, \ldots, k_{n-2}, k_{n-1}\} \)

Thus the Schlafli symbol of \(\Pi_n \) is \(\{k_1, k_2, \ldots, k_{n-1}\} \).
Regular 4-dimensional polytopes

Regular polyhedrons

\{3, 3\}, \{3, 4\}, \{3, 5\}, \{4, 3\}, \{5, 3\}
Regular 4-dimensional polytopes

Regular polyhedrons

{3, 3}, {3, 4}, {3, 5}, {4, 3}, {5, 3}

By superimposing we can form the following Schläfli symbols:

{3, 3, 3}, {3, 3, 4}, {3, 3, 5}
Regular 4-dimensional polytopes

Regular polyhedrons

\{3, 3\}, \{3, 4\}, \{3, 5\}, \{4, 3\}, \{5, 3\}

By superimposing we can form the following Schl"afli symbols:

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}

\{3, 4, 3\}
Regular 4-dimensional polytopes

Regular polyhedrons

\[
\{3,3\}, \{3,4\}, \{3,5\}, \{4,3\}, \{5,3\}
\]

By superimposing we can form the following Schl"afli symbols:

\[
\{3,3,3\}, \{3,3,4\}, \{3,3,5\}
\]

\[
\{3,4,3\}
\]

\[
\{3,5,3\}
\]
Regular 4-dimensional polytopes

Regular polyhedrons

\{3, 3\}, \{3, 4\}, \{3, 5\}, \{4, 3\}, \{5, 3\}

By superimposing we can form the following Schlafli symbols:

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}
\{3, 4, 3\}
\{3, 5, 3\}
\{4, 3, 3\}, \{4, 3, 4\}, \{4, 3, 5\}
Regular 4-dimensional polytopes

Regular polyhedrons

\{3, 3\}, \{3, 4\}, \{3, 5\}, \{4, 3\}, \{5, 3\}

By superimposing we can form the following Schl"afli symbols:

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}
\{3, 4, 3\}
\{3, 5, 3\}
\{4, 3, 3\}, \{4, 3, 4\}, \{4, 3, 5\}
\{5, 3, 3\}, \{5, 3, 4\}, \{5, 3, 5\}
Regular 4-dimensional polytopes

Regular polyhedrons

\{3, 3\}, \{3, 4\}, \{3, 5\}, \{4, 3\}, \{5, 3\}

By superimposing we can form the following Schläfli symbols:

\[
\begin{align*}
\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\} \\
\{3, 4, 3\} \\
\{3, 5, 3\} \\
\{4, 3, 3\}, \{4, 3, 4\}, \{4, 3, 5\} \\
\{5, 3, 3\}, \{5, 3, 4\}, \{5, 3, 5\}
\end{align*}
\]
Regular 4-dimensional polytopes

Regular polyhedrons

\{3, 3\}, \{3, 4\}, \{3, 5\}, \{4, 3\}, \{5, 3\}

By superimposing we can form the following Schl"afli symbols:

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}, \{3, 4, 3\}, \{3, 5, 3\}, \{4, 3, 3\}, \{4, 3, 4\}, \{4, 3, 5\}, \{5, 3, 3\}, \{5, 3, 4\}, \{5, 3, 5\}
Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}, \{3, 4, 3\}, \{4, 3, 3\}, \{5, 3, 3\}
Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}, \{3, 4, 3\}, \{4, 3, 3\}, \{5, 3, 3\}

By superimposing we can form the following Schl"afli symbols:

\{3, 3, 3, 3\}, \{3, 3, 3, 4\}, \{3, 3, 3, 5\}
Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}, \{3, 4, 3\}, \{4, 3, 3\}, \{5, 3, 3\}

By superimposing we can form the following Schlӓfi symbols:

\{3, 3, 3, 3\}, \{3, 3, 3, 4\}, \{3, 3, 3, 5\}
\{3, 3, 4, 3\}
Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}, \{3, 4, 3\}, \{4, 3, 3\}, \{5, 3, 3\}

By superimposing we can form the following Schlӓfli symbols:

\{3, 3, 3, 3\}, \{3, 3, 3, 4\}, \{3, 3, 3, 5\}

\{3, 3, 4, 3\}

\{3, 4, 3, 3\}
Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}, \{3, 4, 3\}, \{4, 3, 3\}, \{5, 3, 3\}

By superimposing we can form the following Schläfli symbols:

\{3, 3, 3, 3\}, \{3, 3, 3, 4\}, \{3, 3, 3, 5\}
\{3, 3, 4, 3\}
\{3, 4, 3, 3\}
\{4, 3, 3, 3\}, \{4, 3, 3, 4\}, \{4, 3, 3, 5\}
Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}, \{3, 4, 3\}, \{4, 3, 3\}, \{5, 3, 3\}

By superimposing we can form the following Schlafli symbols:

\{3, 3, 3, 3\}, \{3, 3, 3, 4\}, \{3, 3, 3, 5\}
\{3, 3, 4, 3\}
\{3, 4, 3, 3\}
\{4, 3, 3, 3\}, \{4, 3, 3, 4\}, \{4, 3, 3, 5\}
\{5, 3, 3, 3\}, \{5, 3, 3, 4\}, \{5, 3, 3, 5\}
Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}, \{3, 4, 3\}, \{4, 3, 3\}, \{5, 3, 3\}

By superimposing we can form the following Schl"afli symbols:

\{3, 3, 3, 3\}, \{3, 3, 3, 4\}, \{3, 3, 3, 5\}
\{3, 3, 4, 3\}
\{3, 4, 3, 3\}
\{4, 3, 3, 3\}, \{4, 3, 3, 4\}, \{4, 3, 3, 5\}
\{5, 3, 3, 3\}, \{5, 3, 3, 4\}, \{5, 3, 3, 5\}
Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes

\{3, 3, 3\}, \{3, 3, 4\}, \{3, 3, 5\}, \{3, 4, 3\}, \{4, 3, 3\}, \{5, 3, 3\}

By superimposing we can form the following Schl"afli symbols:

\{3, 3, 3, 3\}, \{3, 3, 4, 3\}, \{3, 3, 3, 5\}

\{3, 3, 4, 3\}

\{3, 4, 3, 3\}

\{4, 3, 3, 3\}, \{4, 3, 3, 4\}, \{4, 3, 3, 5\}

\{5, 3, 3, 3\}, \{5, 3, 3, 4\}, \{5, 3, 3, 5\}
Three regular 5-dimensional polytopes

\{3,3,3,3\}, \{3,3,3,4\}, \{4,3,3,3\}
Three regular 5-dimensional polytopes

\{3, 3, 3, 3\}, \{3, 3, 3, 4\}, \{4, 3, 3, 3\}

Proceeding in the same manner we can form the following Schl{"a}fli symbols:

\[
\alpha_n = \{3, 3, \ldots, 3, 3\} = \{3^{n-1}\} \text{ Simplex}
\]

\[
\beta_n = \{3, 3, \ldots, 3, 4\} = \{3^{n-2}, 4\} \text{ Cross polytope}
\]

\[
\gamma_n = \{4, 3, \ldots, 3, 3\} = \{4, 3^{n-2}\} \text{ Hypercube}
\]
Three regular 5-dimensional polytopes

\{3,3,3,3\}, \{3,3,3,4\}, \{4,3,3,3\}

Proceeding in the same manner we can form the following Schlӓfli symbols:

\[\alpha_n = \{3,3,\ldots,3,3\} = \{3^{n-1}\} \text{ Simplex} \]
\[\beta_n = \{3,3,\ldots,3,4\} = \{3^{n-2},4\} \text{ Cross polytope} \]
\[\gamma_n = \{4,3,\ldots,3,3\} = \{4,3^{n-2}\} \text{ Hypercube} \]

We can also get \{4,3,\ldots,3,4\} = \{4,3^{n-3},4\}, but it turns out to be a honeycomb.
Summary

<table>
<thead>
<tr>
<th>Dimension</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>≥ 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of polytopes</td>
<td>1</td>
<td>∞</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>