Quantum algorithms for searching, resampling, and hidden shift problems

Maris Ozols University of Waterloo IQC

November 7, 2011

Outline

- 1. Quantum algorithms for searching
- 2. Quantum rejection sampling
- 3. Boolean hidden shift problem

Previous work

 [arXiv:1004.2721] Adiabatic condition and the quantum hitting time of Markov chains

Hari Krovi, Maris Ozols, Jérémie Roland

Phys. Rev. A, vol. 82(2), pp. 022333 (2010)

► [arXiv:1002.2419] Finding is as easy as detecting for quantum walks

Hari Krovi, Frédéric Magniez, Maris Ozols, Jérémie Roland

- Lecture Notes in Computer Science, vol. 6198, pp. 540–551 (2010)
- ICALP 2010
- QIP 2011 (featured talk)
- [arXiv:1009.1195] Entanglement can increase asymptotic rates of zero-error classical communication over classical channels

Debbie Leung, Laura Mancinska, William Matthews, Maris Ozols, Aidan Roy

- Communications in Mathematical Physics (submitted)
- QIP 2011 (featured talk)

[arXiv:1103.2774] Quantum rejection sampling

Maris Ozols, Martin Roetteler, Jérémie Roland

- QIP 2012 (invited talk)
- ITCS 2012

Quantum algorithms for searching

Spatial search on a graph

Setup

- Graph with vertex set X
- Marked vertices: unknown $M \subseteq X$
- Vertex register: current position
- Edges: legal moves

Spatial search on a graph

Setup

- Graph with vertex set X
- Marked vertices: unknown $M \subseteq X$
- Vertex register: current position
- Edges: legal moves

The problem

- Move the robot to a marked vertex $x \in M$
- Complexity: # moves

Search via random walk

Markov chain on the graph Stochastic matrix $P = (p_{xy})$

- $p_{xy} \neq 0$ only if (x, y) is an edge
- stationary distribution: $\pi = \pi P$

Search via random walk

Markov chain on the graph Stochastic matrix $P = (p_{xy})$

- $p_{xy} \neq 0$ only if (x, y) is an edge
- stationary distribution: $\pi = \pi P$

Algorithm

- Start from random $x \sim \pi$
- Apply P until x is marked

Search via random walk

Markov chain on the graph Stochastic matrix $P = (p_{xy})$

- $p_{xy} \neq 0$ only if (x, y) is an edge
- stationary distribution: $\pi = \pi P$

Algorithm

- \blacktriangleright Start from random $x \sim \pi$
- Apply P until x is marked

Hitting time $\mathrm{HT}(P,M) = \mathrm{expected}\ \#\ \mathrm{steps}\ \mathrm{of}\ P\ \mathrm{to}\ \mathrm{reach}\ \mathrm{any}\ x \in M$

Classical intuition

Absorbing walk

- ► Turn all outgoing transitions from marked vertices into self-loops: $P = \begin{pmatrix} P_{UU} & P_{UM} \\ P_{MU} & P_{MM} \end{pmatrix} \Rightarrow P' = \begin{pmatrix} P_{UU} & P_{UM} \\ 0 & I \end{pmatrix}$
- Stationary distribution: $\pi_M = ``\pi$ restricted to M"

Classical intuition

Absorbing walk

- ► Turn all outgoing transitions from marked vertices into self-loops: $P = \begin{pmatrix} P_{UU} & P_{UM} \\ P_{MU} & P_{MM} \end{pmatrix} \Rightarrow P' = \begin{pmatrix} P_{UU} & P_{UM} \\ 0 & I \end{pmatrix}$
- Stationary distribution: $\pi_M = ``\pi$ restricted to M"

Interpolation

$$\blacktriangleright P(s) = (1-s)P + sP'$$

• Stationary distribution: $\pi(s) \sim ((1-s)\pi_U \pi_M)$

The algorithm

Adiabatic version

- Define a Hamiltonian H(s) corresponding to P(s)
- Interpolate s from 0 to 1

The algorithm

Adiabatic version

- Define a Hamiltonian H(s) corresponding to P(s)
- Interpolate s from 0 to 1

Circuit version

- Use Szegedy's method to define a unitary W(P(s))
- W(P(s)) has a unique 1-eigenvector $|\pi(s)\rangle$
- Use phase estimation to measure in the eigenbasis of W(P(s))

The algorithm

Adiabatic version

- Define a Hamiltonian H(s) corresponding to P(s)
- Interpolate s from 0 to 1

Circuit version

- Use Szegedy's method to define a unitary W(P(s))
- W(P(s)) has a unique 1-eigenvector $|\pi(s)\rangle$
- Use phase estimation to measure in the eigenbasis of W(P(s))

Algorithm

- **1**. Prepare $|\pi\rangle$
- 2. Project onto $|\pi(s^*)\rangle = \frac{|\pi_U\rangle + |\pi_M\rangle}{\sqrt{2}}$
- 3. Measure current vertex

Theorem

Let P be a reversible, ergodic Markov chain on a set X and $M\subseteq X$ be a set of marked elements. A quantum algorithm can find an element in M within $\sqrt{\mathrm{HT}(P,M)}$ steps

- Given: Ability to sample from distribution p
- **Task:** Sample from distribution s

- Given: Ability to sample from distribution p
- **Task:** Sample from distribution s
- ▶ Note: Distributions *p* and *s* are known

- Given: Ability to sample from distribution p
- **Task:** Sample from distribution s
- Note: Distributions p and s are known, but samples are pairs (k, ξ(k)) where ξ(k) is not accessible

- Given: Ability to sample from distribution p
- **Task:** Sample from distribution s
- Note: Distributions p and s are known, but samples are pairs (k, ξ(k)) where ξ(k) is not accessible

Classical resampling problem

- Given: Ability to sample from distribution p
- **Task:** Sample from distribution s
- Note: Distributions p and s are known, but samples are pairs (k, ξ(k)) where ξ(k) is not accessible

Classical algorithm

• Accept
$$k$$
 with probability $\gamma \frac{s_k}{p_k}$

Classical resampling problem

- Given: Ability to sample from distribution p
- **Task:** Sample from distribution s
- Note: Distributions p and s are known, but samples are pairs (k, ξ(k)) where ξ(k) is not accessible

Classical algorithm

• Accept
$$k$$
 with probability $\gamma \frac{s_k}{p_k}$ where $\forall k: \gamma \frac{s_k}{p_k} \leq 1$

Classical resampling problem

- Given: Ability to sample from distribution p
- **Task:** Sample from distribution s
- ► Note: Distributions p and s are known, but samples are pairs (k, ξ(k)) where ξ(k) is not accessible

Classical algorithm

$$\blacktriangleright$$
 Accept k with probability $\gamma \frac{s_k}{p_k}$ where $\gamma = \min_k \frac{p_k}{s_k}$

Classical resampling problem

- Given: Ability to sample from distribution p
- **Task:** Sample from distribution s
- Note: Distributions p and s are known, but samples are pairs (k, ξ(k)) where ξ(k) is not accessible

Classical algorithm

 \blacktriangleright Accept k with probability $\gamma \frac{s_k}{p_k}$ where $\gamma = \min_k \frac{p_k}{s_k}$

• Complexity: $\Theta(1/\gamma)$ where $1/\gamma = \max_k \frac{s_k}{p_k}$

Quantum resampling problem

• Given: Oracle $O: |0\rangle \mapsto \sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle$

Quantum resampling problem

- Given: Oracle $O: |0\rangle \mapsto \sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle$
- **Task:** Perform transformation

$$\sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle \mapsto \sum_{k=1}^{n} \sigma_k |\xi_k\rangle |k\rangle$$

Quantum resampling problem

- Given: Oracle $O: |0\rangle \mapsto \sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle$
- **Task:** Perform transformation

$$\sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle \mapsto \sum_{k=1}^{n} \sigma_k |\xi_k\rangle |k\rangle$$

▶ Note: Amplitudes π_k and σ_k are known, but states $|\xi_k\rangle$ are not known

Quantum resampling problem

- Given: Oracle $O: |0\rangle \mapsto \sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle$
- **Task:** Perform transformation

$$\sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle \mapsto \sum_{k=1}^{n} \sigma_k |\xi_k\rangle |k\rangle$$

 \blacktriangleright Note: Amplitudes π_k and σ_k are known, but states $|\xi_k\rangle$ are not known

Theorem

The quantum query complexity of the $\pi \to \sigma$ quantum resampling problem is $\Theta(1/\gamma)$ where $1/\gamma = \max_k \left| \frac{\sigma_k}{\pi_k} \right|$

Quantum resampling problem

- Given: Oracle $O: |0\rangle \mapsto \sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle$
- **Task:** Perform transformation

$$\sum_{k=1}^{n} \pi_k |\xi_k\rangle |k\rangle \mapsto \sum_{k=1}^{n} \sigma_k |\xi_k\rangle |k\rangle$$

 \blacktriangleright Note: Amplitudes π_k and σ_k are known, but states $|\xi_k\rangle$ are not known

Theorem

The quantum query complexity of the $\pi \to \sigma$ quantum resampling problem is $\Theta(1/\gamma)$ where $1/\gamma = \max_k \left| \frac{\sigma_k}{\pi_k} \right|$

Proof idea: Algorithm is based on amplitude amplification, but the lower bound is based on a hybrid argument

Applications

Implicit use

- synthesis of quantum states [Grover, 2000]
- Inear systems of equations [Harrow, Hassidim and Lloyd 2009]
- ► fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

- speed up quantum Metropolis sampling algorithm by [Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]
- new quantum algorithm for the hidden shift problem of any Boolean function

New applications by others

preparing PEPS states [Schwarz, Temme, Verstraete, 2011]

Boolean hidden shift problem

Motivation

Hidden shift and subgroup problems

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

Determine: The hidden shift *s*

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

Determine: The hidden shift *s*

Delta functions are hard

$$\blacktriangleright f(x) := \delta_{x,x_0}$$

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

Determine: The hidden shift *s*

Delta functions are hard

$$\blacktriangleright f(x) := \delta_{x,x_0}$$

Problem

▶ Given: Complete knowledge of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ and access to a black-box oracle for $f_s(x) := f(x+s)$

$$x \Rightarrow \square \Rightarrow f_s(x)$$

Determine: The hidden shift *s*

Delta functions are hard

•
$$f(x) := \delta_{x,x_0}$$

• Equivalent to Grover's search: $\Theta(\sqrt{2^n})$

The ± 1 -function (normalized)

►
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

The ± 1 -function (normalized)

•
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

Fourier transform

$$\hat{F}(w) := \langle w | H^{\otimes n} | F \rangle$$

The ± 1 -function (normalized)

•
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

Fourier transform

$$\blacktriangleright \hat{F}(w) := \langle w | H^{\otimes n} | F \rangle$$

The ± 1 -function (normalized)

•
$$F(x) := \frac{1}{\sqrt{2^n}} (-1)^{f(x)}$$

Fourier transform

$$\blacktriangleright \hat{F}(w) := \langle w | H^{\otimes n} | F \rangle$$

Function f is **bent** if $\forall w : |\hat{F}(w)| = \frac{1}{\sqrt{2^n}}$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

Preparing the "phase state"

• Phase oracle
$$O_{f_s}: |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\blacktriangleright |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\bullet |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Algorithm [Rötteler'10]

▶ If
$$f$$
 is bent then $\forall w : |\hat{F}(w)| = \frac{1}{\sqrt{2^n}}$ and thus
$$H^{\otimes n} \operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right) |\Phi(s)\rangle = |s\rangle$$

Preparing the "phase state"

• Phase oracle
$$O_{f_s} : |x\rangle \mapsto (-1)^{f_s(x)} |x\rangle$$

$$|0\rangle^{\otimes n} - H^{\otimes n} - O_{f_s} - H^{\otimes n} - |\Phi(s)\rangle$$

$$\bullet |\Phi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) |w\rangle$$

Algorithm [Rötteler'10]

▶ If
$$f$$
 is bent then $\forall w : |\hat{F}(w)| = \frac{1}{\sqrt{2^n}}$ and thus
$$H^{\otimes n} \operatorname{diag}\left(\frac{|\hat{F}(w)|}{\hat{F}(w)}\right) |\Phi(s)\rangle = |s\rangle$$

• Complexity: $\Theta(1)$

Other Boolean functions?

Known

- delta functions are hard
- bent functions are easy

Problem

What is the quantum query complexity of the hidden shift problem for an arbitrary Boolean function?

Other Boolean functions?

Known

- delta functions are hard
- bent functions are easy

Problem

What is the quantum query complexity of the hidden shift problem for an arbitrary Boolean function?

Three approaches

- 1. Grover-like [Grover'00] / quantum rejection sampling [ORR'11]
- 2. Pretty good measurement
- 3. Simon-like [Rötteler'10, GRR'11]

Quantum resampling

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

Quantum resampling

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

Complexity: $O(1/\gamma)$ where $1/\gamma = \max_w \frac{\sigma_w}{\pi_w} = \frac{1}{\sqrt{2^n}} \cdot \frac{1}{\hat{F}_{\min}}$

Quantum resampling

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

Complexity: $O(1/\gamma)$ where $1/\gamma = \max_w \frac{\sigma_w}{\pi_w} = \frac{1}{\sqrt{2^n}} \cdot \frac{1}{\hat{F}_{\min}}$

Performance

- Delta functions: $O(\sqrt{2^n})$
- ▶ Bent functions: *O*(1)

Quantum resampling

$$\sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \hat{F}(w) | w \rangle \mapsto \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} \frac{1}{\sqrt{2^n}} | w \rangle$$

Complexity: $O(1/\gamma)$ where $1/\gamma = \max_w \frac{\sigma_w}{\pi_w} = \frac{1}{\sqrt{2^n}} \cdot \frac{1}{\hat{F}_{\min}}$

Performance

- Delta functions: $O(\sqrt{2^n})$
- Bent functions: O(1)

Issues

• What if
$$\hat{F}_{\min} = 0$$
?

• Undetectable anti-shifts: f(x+s) = f(x) + 1

Aim for approximately flat state

- Aim for approximately flat state
- Fix success probability p

- Aim for approximately flat state
- Fix success probability p
- ▶ Optimal target amplitudes are given by the "water filling" vector ε_p such that $\mu^{\mathsf{T}} \cdot \frac{\varepsilon_p}{\|\varepsilon_p\|_2} \ge \sqrt{p}$ where $\mu_w = \frac{1}{\sqrt{2^n}}$

- Aim for approximately flat state
- Fix success probability p
- ▶ Optimal target amplitudes are given by the "water filling" vector ε_p such that $\mu^{\mathsf{T}} \cdot \frac{\varepsilon_p}{\|\varepsilon_p\|_2} \ge \sqrt{p}$ where $\mu_w = \frac{1}{\sqrt{2^n}}$

- Aim for approximately flat state
- Fix success probability p
- ▶ Optimal target amplitudes are given by the "water filling" vector ε_p such that $\mu^{\mathsf{T}} \cdot \frac{\varepsilon_p}{\|\varepsilon_p\|_2} \ge \sqrt{p}$ where $\mu_w = \frac{1}{\sqrt{2^n}}$

- Aim for approximately flat state
- Fix success probability p
- Optimal target amplitudes are given by the "water filling" vector ε_p such that $\mu^{\mathsf{T}} \cdot \frac{\varepsilon_p}{\|\varepsilon_p\|_2} \ge \sqrt{p}$ where $\mu_w = \frac{1}{\sqrt{2^n}}$
- Queries: $O(1/\|\boldsymbol{\varepsilon}_p\|_2)$

After stage 1: $|\Phi(s)\rangle^{\otimes t} = \left(\sum_{w\in\mathbb{Z}_2^n} (-1)^{s\cdot w} \hat{F}(w) |w\rangle\right)^{\otimes t}$

 $\begin{array}{ll} \text{After stage 1:} & |\Phi(s)\rangle^{\otimes t} = \left(\sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}\hat{F}(w)|w\rangle\right)^{\otimes t} \\ \text{After stage 2:} & |\Phi^t(s)\rangle := \sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}|\mathcal{F}_w^t\rangle|w\rangle \end{array}$

 $\begin{array}{ll} \text{After stage 1:} & |\Phi(s)\rangle^{\otimes t} = \left(\sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}\hat{F}(w)|w\rangle\right)^{\otimes t} \\ \text{After stage 2:} & |\Phi^t(s)\rangle := \sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}|\mathcal{F}_w^t\rangle|w\rangle \\ \\ \text{PGM:} & |E_s^t\rangle := \frac{1}{\sqrt{2^n}}\sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}\frac{|\mathcal{F}_w^t\rangle}{||\mathcal{F}_w^t\rangle||_2}|w\rangle \end{array}$

 $\begin{array}{ll} \text{After stage 1:} & |\Phi(s)\rangle^{\otimes t} = \left(\sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}\hat{F}(w)|w\rangle\right)^{\otimes t} \\ \text{After stage 2:} & |\Phi^t(s)\rangle := \sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}|\mathcal{F}_w^t\rangle|w\rangle \\ \\ \text{PGM:} & |E_s^t\rangle := \frac{1}{\sqrt{2^n}}\sum_{w\in\mathbb{Z}_2^n}(-1)^{s\cdot w}\frac{|\mathcal{F}_w^t\rangle}{||\mathcal{F}_w^t\rangle||_2}|w\rangle \end{array}$

Success probability:

$$\left| \langle E_s^t | \Phi^t(s) \rangle \right|^2 = \frac{1}{2^n} \left(\sum_{w \in \mathbb{Z}_2^n} \sqrt{\frac{1}{\sqrt{2^n}} (F * F)^t(w)} \right)^2$$

പ

Algorithm 2: Pros / cons

Performance

- ▶ Bent functions: *O*(1)
- ▶ Random functions: *O*(1)
- No issues with undetectable anti-shifts

Issues

• Delta functions: $O(2^n)$, no speedup

Note

For some $t \leq n$ all amplitudes will be non-zero!

Algorithm 3: Simon-like

• Oracle
$$O_{f_{ks}} : |k\rangle |w\rangle \mapsto (-1)^{f(x+ks)} |k\rangle |w\rangle$$

Algorithm 3: Simon-like

• Oracle
$$O_{f_{ks}} : |k\rangle |w\rangle \mapsto (-1)^{f(x+ks)} |k\rangle |w\rangle$$

 $|0\rangle \qquad H \qquad k \qquad H$
 $|0\rangle^{\otimes n} \qquad H^{\otimes n} \qquad O_{f_{ks}} \qquad H^{\otimes n} \qquad H^{\otimes n}$
 $|\Psi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} \hat{F}(w) |s \cdot w\rangle |w\rangle$

• Complexity: $O(n/\sqrt{I_f})$

Algorithm 3: Simon-like

• Oracle
$$O_{f_{ks}}: |k\rangle |w\rangle \mapsto (-1)^{f(x+ks)} |k\rangle |w\rangle$$

$$|\Psi(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} F(w) |s \cdot w\rangle |w|$$

- Complexity: $O(n/\sqrt{I_f})$
- Where $I_f(w)$ is the *influence* of $w \in \mathbb{Z}_2^n$ on f:

$$I_f(w) := \Pr_x \Big[f(x) \neq f(x+w) \Big]$$

and $I_f := \min_w I_f(w)$

Summary

Comparison

	delta	bent	random	$\hat{F}(w) = 0$ issues
Grover-like	$O(\sqrt{2^n})$	O(1)	O(1)	yes
PGM	$O(2^n)$	O(1)	O(1)	no
Simon-like	$O(n\sqrt{2^n})$	O(n)	O(n)	no

Conclusions

- PGM and Simon-like are suboptimal in some cases
- the Grover-like algorithm fails when lots of Fourier coefficients are equal to zero

The main goals

► Find an optimal quantum query algorithm for solving BHSP

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

Intermediate problems

Find an intermediate class of functions as a new test case

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

Intermediate problems

- Find an intermediate class of functions as a new test case
 - Decision trees?
The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

- Find an intermediate class of functions as a new test case
 - Decision trees?
- Related problems:

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

- Find an intermediate class of functions as a new test case
 - Decision trees?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

- Find an intermediate class of functions as a new test case
 - Decision trees?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

- Find an intermediate class of functions as a new test case
 - Decision trees?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$
- What is the classical query complexity of this problem?

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

- Find an intermediate class of functions as a new test case
 - Decision trees?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$
- What is the classical query complexity of this problem?
- What can we say about the time complexity?

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

- Find an intermediate class of functions as a new test case
 - Decision trees?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$
- What is the classical query complexity of this problem?
- What can we say about the time complexity?
- Generalize everything from \mathbb{Z}_2 to \mathbb{Z}_d

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

- Find an intermediate class of functions as a new test case
 - Decision trees?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$
- What is the classical query complexity of this problem?
- What can we say about the time complexity?
- Generalize everything from \mathbb{Z}_2 to \mathbb{Z}_d
- Applications

The main goals

- Find an optimal quantum query algorithm for solving BHSP
- Prove a matching quantum query lower bound

- Find an intermediate class of functions as a new test case
 - Decision trees?
- Related problems:
 - Verification of s: $O(1/\sqrt{I_f})$
 - Extracting parity $w \cdot s$: $O(1/\hat{F}(w))$
- What is the classical query complexity of this problem?
- What can we say about the time complexity?
- Generalize everything from \mathbb{Z}_2 to \mathbb{Z}_d
- Applications
 - Breaking cryptosystems?

...any questions?

Why does it work?

• States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

Why does it work?

► States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

where $||\mathcal{F}_w^t\rangle|_2^2 = \left[\hat{F}^2\right]^{*t} (w) = \frac{1}{\sqrt{2^n}} \underbrace{(F * F)^t}(w)$

Why does it work?

► States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

where $|||\mathcal{F}_w^t\rangle||_2^2 = [\hat{F}^2]^{*t}(w) = \frac{1}{\sqrt{2^n}} \widehat{(F * F)^t}(w)$

• Convolution: $(F * F)(w) = \sum_{x \in \mathbb{Z}_2^n} F(x)F(w - x)$

Why does it work?

States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

where $|||\mathcal{F}_w^t\rangle||_2^2 = [\hat{F}^2]^{*t}(w) = \frac{1}{\sqrt{2^n}} (F * F)^t(w)$

• Convolution: $(F * F)(w) = \sum_{x \in \mathbb{Z}_2^n} F(x)F(w - x)$

Why does it work?

► States:
$$|\Phi^t(s)\rangle := \sum_{w \in \mathbb{Z}_2^n} (-1)^{s \cdot w} |\mathcal{F}_w^t\rangle |w\rangle$$

where $||\mathcal{F}_w^t\rangle||_2^2 = [\hat{F}^2]^{*t}(w) = \frac{1}{\sqrt{2^n}} \widehat{(F * F)^t}(w)$

• Convolution:
$$(F * F)(w) = \sum_{x \in \mathbb{Z}_2^n} F(x)F(w-x)$$

