
Quantum algorithms for searching,
resampling, and hidden shift problems

Maris Ozols
University of Waterloo

IQC

November 7, 2011

Outline

1. Quantum algorithms for searching

2. Quantum rejection sampling

3. Boolean hidden shift problem

Previous work

I [arXiv:1004.2721] Adiabatic condition and the quantum hitting time of
Markov chains

Hari Krovi, Maris Ozols, Jérémie Roland
I Phys. Rev. A, vol. 82(2), pp. 022333 (2010)

I [arXiv:1002.2419] Finding is as easy as detecting for quantum walks

Hari Krovi, Frédéric Magniez, Maris Ozols, Jérémie Roland
I Lecture Notes in Computer Science, vol. 6198, pp. 540–551 (2010)
I ICALP 2010
I QIP 2011 (featured talk)

I [arXiv:1009.1195] Entanglement can increase asymptotic rates of
zero-error classical communication over classical channels

Debbie Leung, Laura Mancinska, William Matthews, Maris Ozols, Aidan Roy
I Communications in Mathematical Physics (submitted)
I QIP 2011 (featured talk)

I [arXiv:1103.2774] Quantum rejection sampling

Maris Ozols, Martin Roetteler, Jérémie Roland
I QIP 2012 (invited talk)
I ITCS 2012

http://arxiv.org/abs/1004.2721
http://dx.doi.org/10.1103/PhysRevA.82.022333
http://arxiv.org/abs/1002.2419
http://dx.doi.org/10.1007/978-3-642-14165-2_46
http://arxiv.org/abs/1009.1195
http://arxiv.org/abs/1103.2774

Quantum algorithms for searching

Spatial search on a graph

Setup

I Graph with vertex set X

I Marked vertices: unknown M ⊆ X
I Vertex register: current position

I Edges: legal moves

The problem

I Move the robot to a
marked vertex x ∈M

I Complexity: # moves

Spatial search on a graph

Setup

I Graph with vertex set X

I Marked vertices: unknown M ⊆ X
I Vertex register: current position

I Edges: legal moves

The problem

I Move the robot to a
marked vertex x ∈M

I Complexity: # moves

Search via random walk

Markov chain on the graph

Stochastic matrix P = (pxy)

I pxy 6= 0 only if (x, y) is an edge

I stationary distribution: π = πP

Algorithm

I Start from random x ∼ π
I Apply P until x is marked

Hitting time

HT(P,M) = expected # steps of P to reach any x ∈M

Search via random walk

Markov chain on the graph

Stochastic matrix P = (pxy)

I pxy 6= 0 only if (x, y) is an edge

I stationary distribution: π = πP

Algorithm

I Start from random x ∼ π
I Apply P until x is marked

Hitting time

HT(P,M) = expected # steps of P to reach any x ∈M

Search via random walk

Markov chain on the graph

Stochastic matrix P = (pxy)

I pxy 6= 0 only if (x, y) is an edge

I stationary distribution: π = πP

Algorithm

I Start from random x ∼ π
I Apply P until x is marked

Hitting time

HT(P,M) = expected # steps of P to reach any x ∈M

Classical intuition

Absorbing walk

I Turn all outgoing transitions from marked vertices into
self-loops: P =

Ä
PUU PUM
PMU PMM

ä
⇒ P ′ =

Ä
PUU PUM
0 I

ä
I Stationary distribution: πM = “π restricted to M”

Interpolation

I P (s) = (1− s)P + sP ′

I Stationary distribution: π(s) ∼
Ä
(1− s)πU πM

ä

Classical intuition

Absorbing walk

I Turn all outgoing transitions from marked vertices into
self-loops: P =

Ä
PUU PUM
PMU PMM

ä
⇒ P ′ =

Ä
PUU PUM
0 I

ä
I Stationary distribution: πM = “π restricted to M”

Interpolation

I P (s) = (1− s)P + sP ′

I Stationary distribution: π(s) ∼
Ä
(1− s)πU πM

ä

The algorithm

Adiabatic version

I Define a Hamiltonian H(s)
corresponding to P (s)

I Interpolate s from 0 to 1

Circuit version

I Use Szegedy’s method to define a unitary W (P (s))

I W (P (s)) has a unique 1-eigenvector |π(s)〉
I Use phase estimation to measure in the eigenbasis of W (P (s))

Algorithm

1. Prepare |π〉

2. Project onto |π(s∗)〉 = |πU 〉+|πM 〉√
2

3. Measure current vertex

The algorithm

Adiabatic version

I Define a Hamiltonian H(s)
corresponding to P (s)

I Interpolate s from 0 to 1

Circuit version

I Use Szegedy’s method to define a unitary W (P (s))

I W (P (s)) has a unique 1-eigenvector |π(s)〉
I Use phase estimation to measure in the eigenbasis of W (P (s))

Algorithm

1. Prepare |π〉

2. Project onto |π(s∗)〉 = |πU 〉+|πM 〉√
2

3. Measure current vertex

The algorithm

Adiabatic version

I Define a Hamiltonian H(s)
corresponding to P (s)

I Interpolate s from 0 to 1

Circuit version

I Use Szegedy’s method to define a unitary W (P (s))

I W (P (s)) has a unique 1-eigenvector |π(s)〉
I Use phase estimation to measure in the eigenbasis of W (P (s))

Algorithm

1. Prepare |π〉

2. Project onto |π(s∗)〉 = |πU 〉+|πM 〉√
2

3. Measure current vertex

The main result

Theorem
Let P be a reversible, ergodic Markov chain on a set X and
M ⊆ X be a set of marked elements. A quantum algorithm can
find an element in M within

»
HT(P,M) steps

Quantum rejection sampling

Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution s

I Note: Distributions p and s are known

, but samples are pairs
(k, ξ(k)) where ξ(k) is not accessible

P
ξ(k)

k A

ξ(k)
accept/reject

k

Classical algorithm

I Accept k with probability γ
sk
pk

I Complexity: Θ(1/γ) where 1/γ = maxk
sk
pk

Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution s

I Note: Distributions p and s are known

, but samples are pairs
(k, ξ(k)) where ξ(k) is not accessible

P
ξ(k)

k A

ξ(k)
accept/reject

k

Classical algorithm

I Accept k with probability γ
sk
pk

I Complexity: Θ(1/γ) where 1/γ = maxk
sk
pk

Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution s

I Note: Distributions p and s are known, but samples are pairs
(k, ξ(k)) where ξ(k) is not accessible

P
ξ(k)

k A

ξ(k)
accept/reject

k

Classical algorithm

I Accept k with probability γ
sk
pk

I Complexity: Θ(1/γ) where 1/γ = maxk
sk
pk

Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution s

I Note: Distributions p and s are known, but samples are pairs
(k, ξ(k)) where ξ(k) is not accessible

P
ξ(k)

k A

ξ(k)
accept/reject

k

Classical algorithm

I Accept k with probability γ
sk
pk

I Complexity: Θ(1/γ) where 1/γ = maxk
sk
pk

Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution s

I Note: Distributions p and s are known, but samples are pairs
(k, ξ(k)) where ξ(k) is not accessible

P
ξ(k)

k A

ξ(k)
accept/reject

k

Classical algorithm

I Accept k with probability γ
sk
pk

I Complexity: Θ(1/γ) where 1/γ = maxk
sk
pk

Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution s

I Note: Distributions p and s are known, but samples are pairs
(k, ξ(k)) where ξ(k) is not accessible

P
ξ(k)

k A

ξ(k)
accept/reject

k

Classical algorithm

I Accept k with probability γ
sk
pk

where ∀k : γ
sk
pk
≤ 1

I Complexity: Θ(1/γ) where 1/γ = maxk
sk
pk

Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution s

I Note: Distributions p and s are known, but samples are pairs
(k, ξ(k)) where ξ(k) is not accessible

P
ξ(k)

k A

ξ(k)
accept/reject

k

Classical algorithm

I Accept k with probability γ
sk
pk

where γ = mink
pk
sk

I Complexity: Θ(1/γ) where 1/γ = maxk
sk
pk

Classical rejection sampling

Classical resampling problem

I Given: Ability to sample from distribution p

I Task: Sample from distribution s

I Note: Distributions p and s are known, but samples are pairs
(k, ξ(k)) where ξ(k) is not accessible

P
ξ(k)

k A

ξ(k)
accept/reject

k

Classical algorithm

I Accept k with probability γ
sk
pk

where γ = mink
pk
sk

I Complexity: Θ(1/γ) where 1/γ = maxk
sk
pk

Quantum rejection sampling

Quantum resampling problem

I Given: Oracle O : |0〉 7→∑n
k=1 πk|ξk〉|k〉

I Task: Perform transformation

n∑
k=1

πk|ξk〉|k〉 7→
n∑
k=1

σk|ξk〉|k〉

I Note: Amplitudes πk and σk are known, but states |ξk〉 are
not known

Theorem
The quantum query complexity of the π → σ quantum resampling

problem is Θ(1/γ) where 1/γ = maxk

∣∣∣∣σkπk
∣∣∣∣

Proof idea: Algorithm is based on amplitude amplification, but the
lower bound is based on a hybrid argument

Quantum rejection sampling

Quantum resampling problem

I Given: Oracle O : |0〉 7→∑n
k=1 πk|ξk〉|k〉

I Task: Perform transformation

n∑
k=1

πk|ξk〉|k〉 7→
n∑
k=1

σk|ξk〉|k〉

I Note: Amplitudes πk and σk are known, but states |ξk〉 are
not known

Theorem
The quantum query complexity of the π → σ quantum resampling

problem is Θ(1/γ) where 1/γ = maxk

∣∣∣∣σkπk
∣∣∣∣

Proof idea: Algorithm is based on amplitude amplification, but the
lower bound is based on a hybrid argument

Quantum rejection sampling

Quantum resampling problem

I Given: Oracle O : |0〉 7→∑n
k=1 πk|ξk〉|k〉

I Task: Perform transformation

n∑
k=1

πk|ξk〉|k〉 7→
n∑
k=1

σk|ξk〉|k〉

I Note: Amplitudes πk and σk are known, but states |ξk〉 are
not known

Theorem
The quantum query complexity of the π → σ quantum resampling

problem is Θ(1/γ) where 1/γ = maxk

∣∣∣∣σkπk
∣∣∣∣

Proof idea: Algorithm is based on amplitude amplification, but the
lower bound is based on a hybrid argument

Quantum rejection sampling

Quantum resampling problem

I Given: Oracle O : |0〉 7→∑n
k=1 πk|ξk〉|k〉

I Task: Perform transformation

n∑
k=1

πk|ξk〉|k〉 7→
n∑
k=1

σk|ξk〉|k〉

I Note: Amplitudes πk and σk are known, but states |ξk〉 are
not known

Theorem
The quantum query complexity of the π → σ quantum resampling

problem is Θ(1/γ) where 1/γ = maxk

∣∣∣∣σkπk
∣∣∣∣

Proof idea: Algorithm is based on amplitude amplification, but the
lower bound is based on a hybrid argument

Quantum rejection sampling

Quantum resampling problem

I Given: Oracle O : |0〉 7→∑n
k=1 πk|ξk〉|k〉

I Task: Perform transformation

n∑
k=1

πk|ξk〉|k〉 7→
n∑
k=1

σk|ξk〉|k〉

I Note: Amplitudes πk and σk are known, but states |ξk〉 are
not known

Theorem
The quantum query complexity of the π → σ quantum resampling

problem is Θ(1/γ) where 1/γ = maxk

∣∣∣∣σkπk
∣∣∣∣

Proof idea: Algorithm is based on amplitude amplification, but the
lower bound is based on a hybrid argument

Applications

Implicit use

I synthesis of quantum states [Grover, 2000]

I linear systems of equations [Harrow, Hassidim and Lloyd 2009]

I fast amplification of QMA [Nagaj, Wocjan, Zhang, 2009]

New applications

I speed up quantum Metropolis sampling algorithm by
[Temme, Osborne, Vollbrecht, Poulin, Verstraete, 2011]

I new quantum algorithm for the hidden shift problem of any
Boolean function

New applications by others

I preparing PEPS states [Schwarz, Temme, Verstraete, 2011]

Boolean hidden shift problem

Motivation

Hidden shift and subgroup problems

Hidden
shift

problems

Hidden
subgroup
problems

Dihedral
group

Symmetric
group

Q
Q

QQk

Legendre
symbol

[van Dam et al., 2003]

�
�

��	

?

New algorithms ?
?

Attacks on
cryptosystems

�
�
��3

Factoring
[Shor, 1994]

���:
Discrete
logarithm

[Shor, 1994]

XXXz Pell’s
equation

[Hallgren, 2002]
Z
ZZ~

?

Lattice
problems
[Regev, 2002]?

?

Graph
isomorphism

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0

x0 + s

fs(x)

s

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1n

f(x)

x0

x0 + s

fs(x)

s

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0

I Equivalent to Grover’s search: Θ(
√

2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

Boolean hidden shift problem (BHSP)

Problem

I Given: Complete knowledge of f : Zn2 → Z2 and access to a
black-box oracle for fs(x) := f(x+ s)

x⇒ ⇒ fs(x)

I Determine: The hidden shift s

Delta functions are hard

I f(x) := δx,x0
I Equivalent to Grover’s search: Θ(

√
2n)

0

1

0n 1nx0 x0 + s

fs(x)

s

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

Fourier transform of Boolean functions

The ±1-function (normalized)

I F (x) := 1√
2n

(−1)f(x)

Fourier transform

I F̂ (w) := 〈w|H⊗n|F 〉

Function f is bent if ∀w : |F̂ (w)| = 1√
2n

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑
w∈Zn2 (−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I If f is bent then ∀w : |F̂ (w)| = 1√
2n

and thus

H⊗n diag
(
|F̂ (w)|
F̂ (w)

)
|Φ(s)〉 = |s〉

I Complexity: Θ(1)

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑
w∈Zn2 (−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I If f is bent then ∀w : |F̂ (w)| = 1√
2n

and thus

H⊗n diag
(
|F̂ (w)|
F̂ (w)

)
|Φ(s)〉 = |s〉

I Complexity: Θ(1)

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑
w∈Zn2 (−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I If f is bent then ∀w : |F̂ (w)| = 1√
2n

and thus

H⊗n diag
(
|F̂ (w)|
F̂ (w)

)
|Φ(s)〉 = |s〉

I Complexity: Θ(1)

Bent functions are easy

Preparing the “phase state”

I Phase oracle Ofs : |x〉 7→ (−1)fs(x)|x〉

|0〉⊗n |Φ(s)〉H⊗n H⊗nOfs

I |Φ(s)〉 :=
∑
w∈Zn2 (−1)s·wF̂ (w)|w〉

Algorithm [Rötteler’10]

I If f is bent then ∀w : |F̂ (w)| = 1√
2n

and thus

H⊗n diag
(
|F̂ (w)|
F̂ (w)

)
|Φ(s)〉 = |s〉

I Complexity: Θ(1)

Other Boolean functions?

Known

I delta functions are hard

I bent functions are easy

Problem
What is the quantum query complexity of the hidden shift problem
for an arbitrary Boolean function?

Three approaches

1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11]

2. Pretty good measurement

3. Simon-like [Rötteler’10, GRR’11]

Other Boolean functions?

Known

I delta functions are hard

I bent functions are easy

Problem
What is the quantum query complexity of the hidden shift problem
for an arbitrary Boolean function?

Three approaches

1. Grover-like [Grover’00] / quantum rejection sampling [ORR’11]

2. Pretty good measurement

3. Simon-like [Rötteler’10, GRR’11]

Algorithm 1: Grover-like / quantum rejection sampling

Quantum resampling

∑
w∈Zn2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn2

(−1)s·w
1√
2n
|w〉

Complexity: O(1/γ) where 1/γ = maxw
σw
πw

=
1√
2n
· 1

F̂min

Performance

I Delta functions: O(
√

2n)

I Bent functions: O(1)

Issues

I What if F̂min = 0?

I Undetectable anti-shifts: f(x+ s) = f(x) + 1

Algorithm 1: Grover-like / quantum rejection sampling

Quantum resampling

∑
w∈Zn2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn2

(−1)s·w
1√
2n
|w〉

Complexity: O(1/γ) where 1/γ = maxw
σw
πw

=
1√
2n
· 1

F̂min

Performance

I Delta functions: O(
√

2n)

I Bent functions: O(1)

Issues

I What if F̂min = 0?

I Undetectable anti-shifts: f(x+ s) = f(x) + 1

Algorithm 1: Grover-like / quantum rejection sampling

Quantum resampling

∑
w∈Zn2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn2

(−1)s·w
1√
2n
|w〉

Complexity: O(1/γ) where 1/γ = maxw
σw
πw

=
1√
2n
· 1

F̂min

Performance

I Delta functions: O(
√

2n)

I Bent functions: O(1)

Issues

I What if F̂min = 0?

I Undetectable anti-shifts: f(x+ s) = f(x) + 1

Algorithm 1: Grover-like / quantum rejection sampling

Quantum resampling

∑
w∈Zn2

(−1)s·wF̂ (w)|w〉 7→
∑
w∈Zn2

(−1)s·w
1√
2n
|w〉

Complexity: O(1/γ) where 1/γ = maxw
σw
πw

=
1√
2n
· 1

F̂min

Performance

I Delta functions: O(
√

2n)

I Bent functions: O(1)

Issues

I What if F̂min = 0?

I Undetectable anti-shifts: f(x+ s) = f(x) + 1

Algorithm 1: Approximate version

I Aim for approximately flat state

I Fix success probability p

I Optimal target amplitudes are given by the “water filling”
vector εp such that µT · εp

‖εp‖2 ≥
√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

Algorithm 1: Approximate version

I Aim for approximately flat state

I Fix success probability p

I Optimal target amplitudes are given by the “water filling”
vector εp such that µT · εp

‖εp‖2 ≥
√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

Algorithm 1: Approximate version

I Aim for approximately flat state

I Fix success probability p

I Optimal target amplitudes are given by the “water filling”
vector εp such that µT · εp

‖εp‖2 ≥
√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

Algorithm 1: Approximate version

I Aim for approximately flat state

I Fix success probability p

I Optimal target amplitudes are given by the “water filling”
vector εp such that µT · εp

‖εp‖2 ≥
√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

Algorithm 1: Approximate version

I Aim for approximately flat state

I Fix success probability p

I Optimal target amplitudes are given by the “water filling”
vector εp such that µT · εp

‖εp‖2 ≥
√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

Algorithm 1: Approximate version

I Aim for approximately flat state

I Fix success probability p

I Optimal target amplitudes are given by the “water filling”
vector εp such that µT · εp

‖εp‖2 ≥
√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

Algorithm 1: Approximate version

I Aim for approximately flat state

I Fix success probability p

I Optimal target amplitudes are given by the “water filling”
vector εp such that µT · εp

‖εp‖2 ≥
√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

Algorithm 1: Approximate version

I Aim for approximately flat state

I Fix success probability p

I Optimal target amplitudes are given by the “water filling”
vector εp such that µT · εp

‖εp‖2 ≥
√
p where µw = 1√

2n

I Queries: O(1/‖εp‖2)

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn2 (−1)s·wF̂ (w)|w〉
ä⊗t

After stage 2: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

PGM: |Ets〉 := 1√
2n

∑
w∈Zn2 (−1)s·w |Ftw〉

‖|Ftw〉‖2
|w〉

Success probability:∣∣∣〈Ets|Φt(s)〉
∣∣∣2 =

1

2n

(∑
w∈Zn2

1√
2n
⁄�(F ∗ F)t (w)

)2

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn2 (−1)s·wF̂ (w)|w〉
ä⊗t

After stage 2: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

PGM: |Ets〉 := 1√
2n

∑
w∈Zn2 (−1)s·w |Ftw〉

‖|Ftw〉‖2
|w〉

Success probability:∣∣∣〈Ets|Φt(s)〉
∣∣∣2 =

1

2n

(∑
w∈Zn2

1√
2n
⁄�(F ∗ F)t (w)

)2

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn2 (−1)s·wF̂ (w)|w〉
ä⊗t

After stage 2: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

PGM: |Ets〉 := 1√
2n

∑
w∈Zn2 (−1)s·w |Ftw〉

‖|Ftw〉‖2
|w〉

Success probability:∣∣∣〈Ets|Φt(s)〉
∣∣∣2 =

1

2n

(∑
w∈Zn2

1√
2n
⁄�(F ∗ F)t (w)

)2

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn2 (−1)s·wF̂ (w)|w〉
ä⊗t

After stage 2: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

PGM: |Ets〉 := 1√
2n

∑
w∈Zn2 (−1)s·w |Ftw〉

‖|Ftw〉‖2
|w〉

Success probability:∣∣∣〈Ets|Φt(s)〉
∣∣∣2 =

1

2n

(∑
w∈Zn2

1√
2n
⁄�(F ∗ F)t (w)

)2

Algorithm 2: Pretty good measurement

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

.

.

.

.

.

.

.

.

.

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

After stage 1: |Φ(s)〉⊗t =
Ä∑

w∈Zn2 (−1)s·wF̂ (w)|w〉
ä⊗t

After stage 2: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

PGM: |Ets〉 := 1√
2n

∑
w∈Zn2 (−1)s·w |Ftw〉

‖|Ftw〉‖2
|w〉

Success probability:∣∣∣〈Ets|Φt(s)〉
∣∣∣2 =

1

2n

(∑
w∈Zn2

1√
2n
⁄�(F ∗ F)t (w)

)2

Algorithm 2: Pros / cons

Performance

I Bent functions: O(1)

I Random functions: O(1)

I No issues with undetectable anti-shifts

Issues

I Delta functions: O(2n), no speedup

Note

I For some t ≤ n all amplitudes will be non-zero!

Algorithm 3: Simon-like

I Oracle Ofks : |k〉|w〉 7→ (−1)f(x+ks)|k〉|w〉

|0〉

|0〉⊗n

H H

H⊗n H⊗nOfks

k

|Ψ(s)〉 :=
∑
w∈Zn2

F̂ (w)|s · w〉|w〉

I Complexity: O(n/
√
If)

I Where If (w) is the influence of w ∈ Zn2 on f :

If (w) := Pr
x

î
f(x) 6= f(x+ w)

ó
and If := minw If (w)

Algorithm 3: Simon-like

I Oracle Ofks : |k〉|w〉 7→ (−1)f(x+ks)|k〉|w〉

|0〉

|0〉⊗n

H H

H⊗n H⊗nOfks

k

|Ψ(s)〉 :=
∑
w∈Zn2

F̂ (w)|s · w〉|w〉

I Complexity: O(n/
√
If)

I Where If (w) is the influence of w ∈ Zn2 on f :

If (w) := Pr
x

î
f(x) 6= f(x+ w)

ó
and If := minw If (w)

Algorithm 3: Simon-like

I Oracle Ofks : |k〉|w〉 7→ (−1)f(x+ks)|k〉|w〉

|0〉

|0〉⊗n

H H

H⊗n H⊗nOfks

k

|Ψ(s)〉 :=
∑
w∈Zn2

F̂ (w)|s · w〉|w〉

I Complexity: O(n/
√
If)

I Where If (w) is the influence of w ∈ Zn2 on f :

If (w) := Pr
x

î
f(x) 6= f(x+ w)

ó
and If := minw If (w)

Summary

Comparison

delta bent random F̂ (w) = 0 issues

Grover-like O(
√

2n) O(1) O(1) yes
PGM O(2n) O(1) O(1) no

Simon-like O(n
√

2n) O(n) O(n) no

Conclusions

I PGM and Simon-like are suboptimal in some cases

I the Grover-like algorithm fails when lots of Fourier coefficients
are equal to zero

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case

I Decision trees?

I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)

I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case

I Decision trees?

I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)

I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case

I Decision trees?

I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)

I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case
I Decision trees?

I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)

I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case
I Decision trees?

I Related problems:

I Verification of s: O
(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case
I Decision trees?

I Related problems:
I Verification of s: O

(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case
I Decision trees?

I Related problems:
I Verification of s: O

(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)

I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case
I Decision trees?

I Related problems:
I Verification of s: O

(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case
I Decision trees?

I Related problems:
I Verification of s: O

(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case
I Decision trees?

I Related problems:
I Verification of s: O

(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd

I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case
I Decision trees?

I Related problems:
I Verification of s: O

(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

Open problems

The main goals

I Find an optimal quantum query algorithm for solving BHSP

I Prove a matching quantum query lower bound

Intermediate problems

I Find an intermediate class of functions as a new test case
I Decision trees?

I Related problems:
I Verification of s: O

(
1/
√
If
)

I Extracting parity w · s: O
(
1/F̂ (w)

)
I What is the classical query complexity of this problem?

I What can we say about the time complexity?

I Generalize everything from Z2 to Zd
I Applications

I Breaking cryptosystems?

...any questions?

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

where ‖|F tw〉‖22 =
î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑
x∈Zn2 F (x)F (w − x)

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

where ‖|F tw〉‖22 =
î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑
x∈Zn2 F (x)F (w − x)

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

where ‖|F tw〉‖22 =
î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑
x∈Zn2 F (x)F (w − x)

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

where ‖|F tw〉‖22 =
î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑
x∈Zn2 F (x)F (w − x)

(F ∗ F)(w)

Algorithm 2: Pretty good measurement

Why does it work?

I States: |Φt(s)〉 :=
∑
w∈Zn2 (−1)s·w|F tw〉|w〉

where ‖|F tw〉‖22 =
î
F̂ 2
ó∗t

(w) = 1√
2n
⁄�(F ∗ F)t (w)

I Convolution: (F ∗ F)(w) =
∑
x∈Zn2 F (x)F (w − x)

1√
2n
⁄�(F ∗ F)t (w)

	Quantum algorithms for searching
	Quantum rejection sampling
	Boolean hidden shift problem

