Flexible Spatial Models on the Example of Temperature in China

Anastasija Tetereva

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Motivation

The objective of spatial interpolation is to create a continuous surface from a discrete set of points. Spatial prediction of weather phenomena are widely used in :
\square environmental science;
\square industry for planning;
\square ecology to study greenhouse effect;
\square weather index-based insurance.
\square

Outline

1. Motivation
2. Data and Descriptives
3. Regression
4. Inverse distance weighting
5. Kriging
6. Copula-based interpolation
7. IDW-GEV interpolation
8. Conclusion

Data

Average temperature in 159 meteorological stations in China over 53 years (from January 1, 1957 till December 31, 2009). Longitude, latitude and elevation of each station are given.
\checkmark Average temperature is the average of max and min.
\square No observations from Tibet (Xizang) and Jilin provinces.
\square Weather stations in Xinjiang, Hunan and Neimongol provinces are widely spaced.
$\square 147$ missing values were replaced.

Observed stations and climatic zones

Figure 1: Weather stations in China grouped by clusters and climatic zones.

Flexible Spatial Models on the Example of Temperature in China \qquad

Descriptive statistics I

Figure 2: Temperature of 5 weather stations grouped by month.
\qquad

Descriptive statistics II

Station	Min	Q1	Median	Mean	Q3	Max	SD
Chaoyang	-22.90	-2.50	11.10	9.13	21.00	33.40	12.90
Dulan	-21.10	-4.90	3.80	3.20	11.30	25.60	9.34
Aershan	-40.50	-16.70	-0.20	-2.58	11.90	27.60	15.66
Haozhou	-11.90	5.80	15.90	14.88	23.90	34.70	10.02
Guilin	-2.90	12.30	20.20	19.00	26.10	33.00	7.86

Table 1: Numerical summary for 5 weather stations.

	Min	Q1	Median	Mean	Q3	Max	SD
distance	30.88	976.05	1600.67	1683.13	2312.26	4480.88	887.42

Table 2: Numerical summary for distances between the stations.

Regression

Chuanyan et al. (2005) propose to model $Z_{t}\left(x_{i}\right)$ as linear function of the geographical characteristics $g_{j}\left(x_{i}\right)$:

$$
Z_{t}\left(x_{i}\right)=\sum_{j=1}^{J} a_{t, j} \cdot g_{j}\left(x_{i}\right)+\varepsilon_{t}\left(x_{i}\right) ; t=1, \ldots, T ; i=1, \ldots, 159
$$

We use latitude, longitude and logarithm of elevation as $g_{j}\left(x_{i}\right)$.
Mean absolute error (out-of-sample) for station i :

$$
\mathrm{MAE}_{i}=\frac{1}{T} \sum_{t=1}^{T}\left|Z_{t}\left(x_{i}\right)-\widehat{Z}_{t}\left(x_{i}\right)\right|
$$

is evaluated using leave-one-out crossvalidation.

Regression error

$\square R^{2}$ varies from 0.36 to 0.97
$\checkmark R^{2}$ strongly depends on the season
\square Error does not "explode" in the mountain regions

Figure 3: MAE for regression model.

Inverse distance weighting (IDW)

\square The inverse distance interpolation formula is given by

$$
\widehat{Z}_{t}\left(x_{0}\right)=\frac{\sum_{j:\left\|x_{j}-x_{0}\right\| \leqslant h} w\left(x_{j}\right) Z_{t}\left(x_{j}\right)}{\sum_{j:\left\|x_{j}-x_{0}\right\| \leqslant h} w\left(x_{j}\right)}, w\left(x_{j}\right)=1 /\left\|x_{j}-x_{0}\right\|^{p}
$$

,
\square We choose optimal p and h for each station

- $h_{i}=\arg \min _{h \in\left[Q_{0.05}, Q_{1}\right]} \sum_{t=1}^{T}\left|Z_{t}\left(x_{i}\right)-\widehat{Z}_{t}\left(x_{i}\right)\right|$
- $p_{i}=\arg \min _{p \in[0.5,20]} \Sigma_{t=1}^{T}\left|Z_{t}\left(x_{i}\right)-\widehat{Z}_{t}\left(x_{i}\right)\right|$
- Q is empirical quantile of distances between the stations

Flexible Spatial Models on the Example of Temperature in China

Choosing p and d

Figure 4: Optimal p (left) and h (right) for station $i=26$.

Flexible Spatial Models on the Example of Temperature in China \qquad

Choosing p and d

Figure 5: Optimal p and h for each station.

Flexible Spatial Models on the Example of Temperature in China \qquad

IDW interpolation error

\square IDW error strongly depends on p and d
\square There is no spatial pattern in p and d
\square We choose $p=3$ and $d=556$ minimizing MAE over all stations
\square MAE strongly depends or region

Figure 6: MAE for IDW model.

Universal kriging

The empirical variogram is given by

$$
\begin{gathered}
2 \widehat{\gamma}_{n}(h)=\frac{1}{\# N(h)} \sum_{\left(x_{i}, x_{j}\right) \in N(h)}\left\{Z\left(x_{i}\right)-Z\left(x_{j}\right)\right\}^{2}, h \in R^{r} . \\
N(h)=\left(x_{i}, x_{j}\right):(r-\delta) \leq\left\|x_{i}-x_{j}\right\| \leq(r+\delta) ; i, j=1, \ldots n, r=\|h\|>0 .
\end{gathered}
$$

We use Gaussian model $\gamma(h)=c+(s-c)\left(1-\exp \frac{-3 h^{2}}{a^{2}}\right)$ and calculate the weights according to

$$
\left[\begin{array}{c}
\lambda_{1} \\
\cdots \\
\lambda_{n} \\
\mu
\end{array}\right]=\left[\begin{array}{cccc}
0 & \cdots & \widehat{\gamma}\left(x_{1}, x_{n}\right) & 1 \\
\ldots & \ddots & \ldots & \ldots \\
\widehat{\gamma}\left(x_{n}, x_{1}\right) & \cdots & \widehat{\gamma}\left(x_{n}, x_{n}\right) & 1 \\
1 & \cdots & \cdots & 1
\end{array}\right]^{-1} \times\left[\begin{array}{c}
\widehat{\gamma}\left(x_{1}, x_{0}\right) \\
\vdots \\
\widehat{\gamma}\left(x_{n}, x_{0}\right) \\
1
\end{array}\right]
$$

Flexible Spatial Models on the Example of Temperature in China \square

Fitting the variogram

Data are anisotropic with two main directions:

Figure 7: Directional empirical variograms and fitted Gaussian models. Flexible Spatial Models on the Example of Temperature in China

Kriging interpolation error

\square Kriging gives similar to IDW error structure
\checkmark MAE is region dependent
\square Error is smaller in the coastal area and larger in the mountain areas

Figure 8: MAE for kriging model.

Copula-based interpolation

Kazianka (2010) and Bardossy (2011) propose to model dependence of any two locations separated by the vector h by

$$
\mathrm{P}\left\{Z\left(x_{i}\right) \leq z_{i}, Z\left(x_{j}\right) \leq z_{j}\right\}=C_{h}\left\{F_{Z}\left(z_{i}\right), F_{Z}\left(z_{j}\right)\right\} .
$$

They use the bivariate spatial copula

$$
c_{h}(u, v)= \begin{cases}c_{1, \tau(h)}(u, v) & , \text { if } 0 \leq h<I_{1} \\ \left(1-\lambda_{2}\right) c_{1, \tau(h)}(u, v)+\lambda_{2} c_{2, \tau(h)}(u, v) & , \text { if } I_{1} \leq h<I_{2} \\ \vdots & \vdots \\ \left(1-\lambda_{k}\right) c_{k-1, \tau(h)}(u, v)+\lambda_{k} & , \text { if } I_{k-1} \leq h<I_{k} \\ 1 & , \text { if } I_{k} \leq h\end{cases}
$$

$\lambda_{j}=\frac{h-l_{j-1}}{l_{j}-l_{j-1}}$. We propose to choose copula and model its parameters as a function of distance and angle.

Copula-based interpolation algorithm

\square Estimate marginals

- Estimate GEV parameters for each station and each day of the year (e.g. for station $i=26$ and $d=18$ th of July)
- Model dependence of GEV parameters from geographical coordinates (use multiple linear regression)
\square Estimate copula family
- Choose bivariate copula
- Estimate copula parameter for each pair of stations
- Model copula parameter as function of separating distance h and angle α

Checking data for serial dependence

Figure 9: ACF (left) and PACF (right) of temperature for $i=26$ and $d=$ 18th of July. ADF test p-value <0.01, Ljung-Box test p-value $=0.61$.

Flexible Spatial Models on the Example of Temperature in China

Checking data for serial dependence

Figure 10: ACF (left) and PACF (right) of squared temperature for $i=26$ and $d=(t \bmod 365)=18$ th of July.

Assessing the quality of a fitted GEV

Figure 11: Goodness of fit for GEV distribution ($i=26$ and $d=18$ th of July).
Flexible Spatial Models on the Example of Temperature in China \qquad

Modeling GEV parameters - μ

Figure 12: μ_{200} as nonparametric and multiple linear regression of Lat, Lon and $\log (E I)$.
\square The chosen model is

$$
\mu_{d}\left(x_{i}\right)=\sum_{j=0}^{2} a_{\mu, d, j} \operatorname{Lat}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} b_{\mu, d, j} \operatorname{Lon}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} c_{\mu, d, j} \log \left\{\operatorname{EI}\left(x_{i}\right)\right\}^{j}+\varepsilon_{d}\left(x_{i}\right)
$$

Flexible Spatial Models on the Example of Temperature in China \qquad

Modeling GEV parameters - σ

Figure 13: σ_{200} as nonparametric and multiple linear regression of Lat, Lon and $\log (\mathrm{EI})$.
\square The chosen model is

$$
\sigma_{d}\left(x_{i}\right)=\sum_{j=0}^{3} a_{\sigma, d, j} \operatorname{Lat}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} b_{\sigma, d, j} \operatorname{Lon}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} c_{\sigma, d, j} \log \left\{\operatorname{EI}\left(x_{i}\right)\right\}^{j}+\varepsilon_{d}\left(x_{i}\right)
$$

Flexible Spatial Models on the Example of Temperature in China \qquad

Modeling GEV parameters - ξ

Figure 14: ξ_{200} as nonparametric and multiple linear regression of Lat, Lon and $\log (E I)$.
\square The chosen model is

$$
\xi_{d}\left(x_{i}\right)=\sum_{j=0}^{4} a_{\xi, d, j} \operatorname{Lat}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} b_{\xi, d, j} \operatorname{Lon}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} c_{\xi, d, j} \log \left\{\operatorname{El}\left(x_{i}\right)\right\}^{j}+\varepsilon_{d}\left(x_{i}\right)
$$

Flexible Spatial Models on the Example of Temperature in China \qquad

Choosing copula family

Figure 15: Contour plots suggest to choose Frank or elliptical family's copula.

Flexible Spatial Models on the Example of Temperature in China \qquad (4)

Modeling parameter of Gaussian copula

Figure 16: Gaussian copula parameter as nonparametric and multiple linear regression on separating distance (h), angle (α) and logarithm of elevation difference $\log \{\Delta(E I)\}$.
\square The chosen model is

$$
\rho_{d}=\sum_{j=0}^{2} a_{\rho, d, j} h^{j}+\sum_{j=1}^{3} b_{\rho, d, j} \alpha^{j}+\sum_{j=1}^{3} c_{\rho, d, j} \log \{\Delta(E I)\}^{j}+\varepsilon_{d}
$$

Flexible Spatial Models on the Example of Temperature in China \qquad

Copula interpolation model (summary)

$$
\begin{aligned}
& \widehat{Z}_{t}\left(x_{0}\right)= \int_{0}^{1} F_{\widehat{\mu}_{d}\left(x_{0}\right), \widehat{\sigma}_{d}\left(x_{0}\right), \widehat{\xi}_{d}\left(x_{0}\right)}^{-1}\left\{u\left(x_{0}\right)\right\} c_{\widehat{\rho}_{d}}\left\{u\left(x_{0}\right) \mid Z_{t}\left(x_{k}\right)\right\} \mathrm{d} u\left(x_{0}\right) \\
& \rho_{d}=\sum_{j=0}^{2} a_{\rho, d, j} h^{j}+\sum_{j=1}^{3} b_{\rho, d, j} \alpha^{j}+\sum_{j=1}^{3} c_{\rho, d, j} \log \{\Delta(\operatorname{EI})\}^{j}+\varepsilon_{d} \\
& \mu_{d}\left(x_{i}\right)= \sum_{j=0}^{2} a_{\mu, d, j} \operatorname{Lat}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} b_{\mu, d, j} \operatorname{Lon}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} c_{\mu, d, j} \log \left\{\operatorname{El}\left(x_{i}\right)\right\}^{j}+\varepsilon_{d}\left(x_{i}\right) \\
& \sigma_{d}\left(x_{i}\right)= \sum_{j=0}^{3} a_{\sigma, d, j} \operatorname{Lat}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} b_{\sigma, d, j} \operatorname{Lon}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} c_{\sigma, d, j} \log \left\{\operatorname{EI}\left(x_{i}\right)\right\}^{j}+\varepsilon_{d}\left(x_{i}\right) \\
& \xi_{d}\left(x_{i}\right)= \sum_{j=0}^{4} a_{\xi, d, j} \operatorname{Lat}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} b_{\xi, d, j} \operatorname{Lon}\left(x_{i}\right)^{j}+\sum_{j=1}^{3} c_{\xi, d, j} \log \left\{\operatorname{EI}\left(x_{i}\right)\right\}^{j}+\varepsilon_{d}\left(x_{i}\right)
\end{aligned}
$$

Flexible Spatial Models on the Example of Temperature in China \qquad

Copula interpolation error

\square Error variation for different types of copulas is very small
\square Copula-based interpolation reduces error in the mountain areas
\square Gives larger error in the coastal area
\checkmark Is too complicated
Figure 17: MAE for copula model.
\qquad

Do we really need copula?

Figure 18: $u_{t}\left(x_{i}\right)$ pattern at $t=200$.
$\square u_{t}\left(x_{i}\right)=$
$\left[\operatorname{rank}\left\{Z_{\tau}\left(x_{i}\right)\right\} / 54\right]_{(t \operatorname{div} 365)}$
$\tau=(d, d+365, \ldots, d+$ 365 -52),
$d=(t \bmod 365)$
$\square u_{t}\left(x_{i}\right)$ are grouped in clusters
\square We propose to estimate $u_{t}\left(x_{0}\right)$ with IDW and apply GEV quantile function to predict the temperature in unknown location
\square

Simplified model

$$
\begin{gathered}
\widehat{Z}_{t}\left(x_{0}\right)=F_{\widehat{\mu}_{d}\left(x_{0}\right), \widehat{\sigma}_{d}\left(x_{0}\right), \widehat{\xi}_{d}\left(x_{0}\right)}\left\{\widehat{u}_{t}\left(x_{0}\right)\right\} \\
\square \widehat{u}_{t}\left(x_{0}\right)=\sum_{i:\left\|x_{j}-x_{0}\right\| \leqslant d} w\left(x_{j}\right) u_{t}\left(x_{j}\right) / \sum_{i:\left\|x_{j}-x_{0}\right\| \leqslant d} w\left(x_{j}\right) \\
w\left(x_{j}\right)=1 /\left\|x_{j}-x_{0}\right\|^{p} \\
\square u_{t}\left(x_{i}\right)=\left[\operatorname{rank}\left\{Z_{\tau}\left(x_{i}\right)\right\} / 54\right]_{(t \text { div } 365)} \\
\square \widehat{\mu}_{d}\left(x_{i}\right), \widehat{\sigma}_{d}\left(x_{i}\right), \widehat{\xi}_{d}\left(x_{i}\right) \text { as in copula interpolation formula }
\end{gathered}
$$

\square

Simplified model interpolation error

- IDW-GEW model gives small interpolation error in the coastal area and is able to capture extreme observations

Figure 19: MAE for IDW-GEW model.

Comparing IDW and IDW-GEV models

\square GEW-IDW model gives improvement for about 50% of the stations (number is season dependent)
\square Improvement has no strong dependence on geographical coordinates
\square GEW-IDW model is useful in prediction extremely high (low) temperatures

Figure 20: (MAE IDW - MAE $_{\text {IDW-GEV }}$) for all stations at $t=200$.
\square

Comparing IDW and IDW-GEV models

Figure 21: IDW (left) and IDW-GEV (right) prediction for station $i=139$.
\qquad

Seasonal variation of error

\square All models give season dependent error

- IDW and IDW-GEV models are more robust
\square IDW outperforms IDW-GEV model during the winter period

Figure 22: MAE for regression, inverse distance weighting, kriging and EDW-GEV model for $d=1, \ldots, 365$.
\qquad

Conclusions

\square The climate of China is extremely diverse - flexible interpolation techniques should be used
\square Interpolation errors are region and time dependent for all discussed methods
\square IDW, IDW-GEV and kriging give the smallest interpolation error
\square Regression,copula-based and IDW-GEV interpolation are more robust methods
\square IDW-GEV interpolation may be useful to handle extreme temperatures

References and articles:

\square Bardossy A. (2011): Interpolation of Groundwater Quality Parameters with Some Values below the Detection Limit, Hydrology and Earth System Sciences
\square Chai H., Cheng W., Zhou C., Chen X., Ma X., Zhao S. (2002): Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China, Natural science
\square Cressie N.A.C. (1991): Statistics for Spatial Data, John Wiley \& Sons
\square Diggle P.J., Ribeiro P.J. (2007): Model-based Geostatistics, Springer

References and articles:

\square Gaetan C., Guyo X. (2010): Spatial Statistics and Modeling, Springer
\square Gräler B., Kazianka H., de Espindola G. M. (2010): Copulas, a novel approach to model spatial and spatio-temporal dependence

- Härdle Wolfgang K.,López Cabrera B., Okhrin O., Wang W.(2011): Localising temperature risk, SFB 649 Discussion Papers
\square Kazianka H., Pilz J. (2010): Spatial Interpolation Using Copula-Based Geostatistical Models, Quantitative Geology and Geostatistics

References and articles:

\square Lauren H., Viger R., McCABE G. (2004): Precipitation interpolation in mountainous regions using multiple linear regression, Hydrology, Water Resources and Ecology in Headwaters
\square Loecher M (2010): Spatio-temporal analysis and interpolation of PM10 measurements in Europe, ETC/ACM Technical Paper 2011/10
\square Nelsen, Roger B. (2006): An Introduction to Copulas, Springer
\square Pebesma E., Cornford D., Dubois G., Heuvelink G.B.M., Hristopoulos D., Pilz J., Stohlker U., Morin G., Skoien J.O. (2011): INTAMAP: the design and implementation of an interoperable automated interpolation web service, Computers \& Geosciences

Flexible Spatial Models on the Example of Temperature in China \qquad

