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Introduction 1-1

Motivation

The objective of spatial interpolation is to create a continuous
surface from a discrete set of points. Spatial prediction of weather
phenomena are widely used in :

� environmental science;

� industry for planning;

� ecology to study greenhouse e�ect;

� weather index-based insurance.
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Introduction 1-2

Outline

1. Motivation X

2. Data and Descriptives

3. Regression

4. Inverse distance weighting

5. Kriging

6. Copula-based interpolation

7. IDW-GEV interpolation

8. Conclusion
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Data and Descriptives 2-1

Data

Average temperature in 159 meteorological stations in China
over 53 years (from January 1, 1957 till December 31, 2009).
Longitude, latitude and elevation of each station are given.

� Average temperature is the average of max and min.

� No observations from Tibet (Xizang) and Jilin provinces.

� Weather stations in Xinjiang, Hunan and Neimongol provinces
are widely spaced.

� 147 missing values were replaced.
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Data and Descriptives 2-2

Observed stations and climatic zones
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Figure 1: Weather stations in China grouped by clusters and climatic
zones.
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Data and Descriptives 2-3

Descriptive statistics I
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Figure 2: Temperature of 5 weather stations grouped by month.
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Data and Descriptives 2-4

Descriptive statistics II

Station Min Q1 Median Mean Q3 Max SD

Chaoyang -22.90 -2.50 11.10 9.13 21.00 33.40 12.90
Dulan -21.10 -4.90 3.80 3.20 11.30 25.60 9.34
Aershan -40.50 -16.70 -0.20 -2.58 11.90 27.60 15.66
Haozhou -11.90 5.80 15.90 14.88 23.90 34.70 10.02
Guilin -2.90 12.30 20.20 19.00 26.10 33.00 7.86

Table 1: Numerical summary for 5 weather stations.

Min Q1 Median Mean Q3 Max SD

distance 30.88 976.05 1600.67 1683.13 2312.26 4480.88 887.42

Table 2: Numerical summary for distances between the stations.
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Regression 3-1

Regression

Chuanyan et al. (2005) propose to model Zt(xi ) as linear function
of the geographical characteristics gj(xi ):

Zt(xi ) =
J∑

j=1

at,j · gj(xi ) + εt(xi ); t = 1, . . . ,T ; i = 1, . . . , 159.

We use latitude, longitude and logarithm of elevation as gj(xi ).

Mean absolute error (out-of-sample) for station i :

MAEi =
1

T

T∑
t=1

|Zt(xi )− Ẑt(xi )|

is evaluated using leave-one-out crossvalidation.
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Regression 3-2

Regression error
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Figure 3: MAE for regression model.

� R2 varies from 0.36 to
0.97

� R2 strongly depends on
the season

� Error does not "explode"
in the mountain regions
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Inverse distance weighting 4-1

Inverse distance weighting (IDW)

� The inverse distance interpolation formula is given by

Ẑt(x0) =

∑
j :‖xj−x0‖6h

w(xj)Zt(xj)∑
j :‖xj−x0‖6h

w(xj)
, w(xj) = 1/‖xj − x0‖p

,

� We choose optimal p and h for each station

I hi = arg min
h∈[Q0.05,Q1]

ΣT
t=1|Zt(xi )− Ẑt(xi )|

I pi = arg min
p∈[0.5,20]

ΣT
t=1|Zt(xi )− Ẑt(xi )|

I Q is empirical quantile of distances between the stations
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Inverse distance weighting 4-2

Choosing p and d
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Figure 4: Optimal p (left) and h (right) for station i = 26.
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Inverse distance weighting 4-3

Choosing p and d
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Figure 5: Optimal p and h for each station.
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Inverse distance weighting 4-4

IDW interpolation error
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Figure 6: MAE for IDW model.

� IDW error strongly
depends on p and d

� There is no spatial
pattern in p and d

� We choose p = 3 and
d = 556 minimizing MAE
over all stations

� MAE strongly depends or
region
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Kriging 5-1

Universal kriging

The empirical variogram is given by

2γ̂n(h) =
1

#N(h)

∑
(xi ,xj )∈N(h)

{Z (xi )− Z (xj)}2, h ∈ R r .

N(h) = (xi , xj ) : (r − δ) ≤ ‖xi − xj‖ ≤ (r + δ); i , j = 1, . . . n, r = ‖h‖ > 0.

We use Gaussian model γ(h) = c + (s − c)
(
1− exp −3h

2

a2

)
and

calculate the weights according to
λ1
· · ·
λn

µ

 =


0 · · · γ̂(x1, xn) 1

· · ·
. . . · · · · · ·

γ̂(xn, x1) · · · γ̂(xn, xn) 1
1 · · · · · · 1 0


−1

×


γ̂(x1, x0)

...
γ̂(xn, x0)

1


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Kriging 5-2

Fitting the variogram

Data are anisotropic with two main directions:
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Figure 7: Directional empirical variograms and �tted Gaussian models.
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Kriging 5-3

Kriging interpolation error
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Figure 8: MAE for kriging model.

� Kriging gives similar to
IDW error structure

� MAE is region dependent

� Error is smaller in the
coastal area and larger in
the mountain areas
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Copula-based interpolation 6-1

Copula-based interpolation

Kazianka (2010) and Bardossy (2011) propose to model
dependence of any two locations separated by the vector h by

P{Z (xi ) ≤ zi ,Z (xj) ≤ zj} = Ch{FZ (zi ),FZ (zj)}.

They use the bivariate spatial copula

ch(u, v) =



c1,τ(h)(u, v) , if 0 ≤ h < l1
(1− λ2)c1,τ(h)(u, v) + λ2c2,τ(h)(u, v) , if l1 ≤ h < l2
...

...
(1− λk)ck−1,τ(h)(u, v) + λk , if lk−1 ≤ h < lk
1 , if lk ≤ h

λj =
h−lj−1

lj−lj−1

. We propose to choose copula and model its parameters as a

function of distance and angle.
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Copula-based interpolation 6-2

Copula-based interpolation algorithm

� Estimate marginals

I Estimate GEV parameters for each station and each day of the
year (e.g. for station i = 26 and d = 18th of July)

I Model dependence of GEV parameters from geographical
coordinates (use multiple linear regression)

� Estimate copula family

I Choose bivariate copula
I Estimate copula parameter for each pair of stations
I Model copula parameter as function of separating distance h

and angle α
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Copula-based interpolation 6-3

Checking data for serial dependence
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Figure 9: ACF (left) and PACF (right) of temperature for i = 26 and d =
18th of July. ADF test p-value < 0.01, Ljung-Box test p-value = 0.61.
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Copula-based interpolation 6-4

Checking data for serial dependence
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Figure 10: ACF (left) and PACF (right) of squared temperature for
i = 26 and d = (t mod 365) = 18th of July.
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Copula-based interpolation 6-5

Assessing the quality of a �tted GEV
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Figure 11: Goodness of �t for GEV distribution (i = 26 and d = 18th of
July).
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Copula-based interpolation 6-6

Modeling GEV parameters - µ
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Figure 12: µ200 as nonparametric and multiple linear regression of Lat,
Lon and log(El).

� The chosen model is

µd (xi ) =
2∑

j=0

aµ,d,jLat(xi )
j+

3∑
j=1

bµ,d,jLon(xi )
j+

3∑
j=1

cµ,d,j log{El(xi )}j+εd (xi )
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Copula-based interpolation 6-7

Modeling GEV parameters - σ
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Figure 13: σ200 as nonparametric and multiple linear regression of Lat,
Lon and log(El).

� The chosen model is

σd (xi ) =
3∑

j=0

aσ,d,jLat(xi )
j+

3∑
j=1

bσ,d,jLon(xi )
j+

3∑
j=1

cσ,d,j log{El(xi )}j+εd (xi )
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Copula-based interpolation 6-8

Modeling GEV parameters - ξ
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Figure 14: ξ200 as nonparametric and multiple linear regression of Lat,
Lon and log(El).

� The chosen model is

ξd (xi ) =
4∑

j=0

aξ,d,jLat(xi )
j+

3∑
j=1

bξ,d,jLon(xi )
j+

3∑
j=1

cξ,d,j log{El(xi )}j+εd (xi )
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Copula-based interpolation 6-9

Choosing copula family
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Figure 15: Contour plots suggest to choose Frank or elliptical family's
copula.
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Figure 16: Gaussian copula parameter as nonparametric and multiple
linear regression on separating distance (h), angle (α) and logarithm of
elevation di�erence log{∆(El)}.

� The chosen model is

ρd =
2∑

j=0

aρ,d,jh
j +

3∑
j=1

bρ,d,jα
j +

3∑
j=1

cρ,d,j log{∆(El)}j + εd
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Copula-based interpolation 6-11

Copula interpolation model (summary)

Ẑt(x0) =

∫ 1

0

F−1
µ̂d (x0),σ̂d (x0),ξ̂d (x0)

{u(x0)}cρ̂d{u(x0)|Zt(xk)} du(x0)

ρd =
2∑

j=0

aρ,d,jh
j +

3∑
j=1

bρ,d,jα
j +

3∑
j=1

cρ,d,j log{∆(El)}j + εd

µd (xi ) =
2∑

j=0

aµ,d,jLat(xi )
j +

3∑
j=1

bµ,d,jLon(xi )
j +

3∑
j=1

cµ,d,j log{El(xi )}j + εd (xi )

σd (xi ) =
3∑

j=0

aσ,d,jLat(xi )
j +

3∑
j=1

bσ,d,jLon(xi )
j +

3∑
j=1

cσ,d,j log{El(xi )}j + εd (xi )

ξd (xi ) =
4∑

j=0

aξ,d,jLat(xi )
j +

3∑
j=1

bξ,d,jLon(xi )
j +

3∑
j=1

cξ,d,j log{El(xi )}j + εd (xi )
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Copula-based interpolation 6-12

Copula interpolation error
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Figure 17: MAE for copula model.

� Error variation for
di�erent types of copulas
is very small

� Copula-based
interpolation reduces error
in the mountain areas

� Gives larger error in the
coastal area

� Is too complicated
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IDW-GEV interpolation 7-1

Do we really need copula?
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Figure 18: ut(xi ) pattern at t = 200.

� ut(xi ) =
[rank{Zτ (xi )}/54](t div 365)

τ = (d , d + 365, . . . , d +
365 · 52),
d = (t mod 365)

� ut(xi ) are grouped in
clusters

� We propose to estimate
ut(x0) with IDW and
apply GEV quantile
function to predict the
temperature in unknown
location
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IDW-GEV interpolation 7-2

Simpli�ed model

Ẑt(x0) = F−1
µ̂d (x0),σ̂d (x0),ξ̂d (x0)

{ût(x0)}

� ût(x0) =
∑

i :‖xj−x0‖6d

w(xj)ut(xj) /
∑

i :‖xj−x0‖6d

w(xj)

w(xj) = 1/‖xj − x0‖p

� ut(xi ) = [rank{Zτ (xi )}/54](t div 365)

� µ̂d (xi ), σ̂d (xi ), ξ̂d (xi ) as in copula interpolation formula
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IDW-GEV interpolation 7-3

Simpli�ed model interpolation error
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Figure 19: MAE for IDW-GEW model.

� IDW-GEW model gives
small interpolation error
in the coastal area and is
able to capture extreme
observations
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IDW-GEV interpolation 7-4

Comparing IDW and IDW-GEV models
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Figure 20: (MAEIDW-MAEIDW-GEV) for all
stations at t = 200.

� GEW-IDW model gives
improvement for about
50% of the stations
(number is season
dependent)

� Improvement has no
strong dependence on
geographical coordinates

� GEW-IDW model is useful
in prediction extremely
high (low) temperatures
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IDW-GEV interpolation 7-5

Comparing IDW and IDW-GEV models

IDW

te
m

pe
ra

tu
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2002 2003 2004 2005

IDW−GEV
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2002 2003 2004 2005

Figure 21: IDW (left) and IDW-GEV (right) prediction for station
i = 139.

Flexible Spatial Models on the Example of Temperature in China
●

●

● ●
●

●
●● ●●

● ●
●

●

● ●
●

● ● ●
●

● ●● ●
● ●

●

● ●
●

●
●●
●

●●●
●

●
●

●
●
●

●

● ●

●●

● ● ●

●
●

●
●●

●
●

●
●

● ●●
● ●

●

●
● ●

●
●●

●
●

● ●
●

●
●

●

●
●

●
●●

●

●
●

●
●

●

●
●

●
● ● ●

●
● ●

● ●
●● ● ●

● ●

● ●
●

●
● ●

●

● ●
●

● ●
●
●

●

●

●

●
● ●

●
●●

●

●

●

●
●

● ● ●

●

●
●

●
●

●
●

●
● ●● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

(0,1]
(1,2]
(2,3]
(3,4]
(4,6]
>6



IDW-GEV interpolation 7-6

Seasonal variation of error

Jan Mrz Mai Jul Sep Nov Jan

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 22: MAE for regression, inverse distance

weighting, kriging and EDW-GEV model for

d = 1, . . . , 365.

� All models give season
dependent error

� IDW and IDW-GEV
models are more robust

� IDW outperforms
IDW-GEV model during
the winter period
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Conclusions 8-1

Conclusions

� The climate of China is extremely diverse - �exible
interpolation techniques should be used

� Interpolation errors are region and time dependent for all
discussed methods

� IDW, IDW-GEV and kriging give the smallest interpolation
error

� Regression,copula-based and IDW-GEV interpolation are more
robust methods

� IDW-GEV interpolation may be useful to handle extreme
temperatures
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