Zinātniskie raksti:
Scientific articles:
Научные статьи:
1. I.Galiņa, Kopēja nekustīgā punkta eksistence neizstiepjošu attēlojumu komutatīvai saimei // LU Zinātniskie Raksti, Matemātika, 1990, V.552, 41-44.
2.I.Galiņa, Ein gleichgewichtiges Bild mit Fixpunkten // LU Zinātniskie Raksti, Matemātika, 1990, V. 552, 45-46.
3. I.Galiņa, Existenz des Fixpunktes die Familie der Abbildungen in einem metrischen Raum // LU Zinātniskie Raksti, Matemātika, 1991, V.562, 161-162.
4. I.Galiņa, Kopēja nekustīgā punkta eksistence neizstiepjošu attēlojumu komutatīvai saimei metriskā telpā // LU Zinātniskie Raksti, 1991, Matemātika, V.562, 163-166.
5. I.Galiņa, On strict convexity // LU Zinātniskie Raksti, Matemātika, 1992, V.576, 193-198.
6. I.Galiņa, Existence of a common fixed point for a family of nonexpansive mappings on a metric space // Application of Topology in Algebra and Differential Geometry, Tartu (Estonia), 1992, 37-40.
7. I.Galiņa, Existence of a common fixed point for a family of mappings of nonexpansive type on a metric space // Int.J.Math.Educ.Sci.Technol. (UK), 1992, 23(6), 861-864.
8. I.Galiņa, Two fixed point theorems in a metric space with closure operator // LU Zinātniskie Raksti, Matemātika, 1993, 23-28.
9. I.Bula, Der Rigaer Deutsch-Baltische Mathematiker Piers Bohl (1865-1921) // J.Baltic Studies (USA), 1993, 24(4), 319-326.
10. I.Bula, Some generalizations of W.A.Kirk's fixed point theorems //LU Zinātniskie Raksti, Matemātika, 1994, V.595, 159-166.
11. I.Bula, On the stability of the Bohl-Brouwer-Schauder theorem // Nonlinear Analysis, Theory, Methods & Applications (USA),1996, V.26(11), 1859-1868.
12. I.Bula, Strictly convex metric spaces and fixed points// Mathematica Moravica, 1999, V.3, 5-16.
13. I.Bula, Approximating certain type of discontinuous mappings with continuous mappings// Int.J. of Applied Mathematics, 2000, V.3(2), 291-301.
14. I.Bula, Discontinuous functions and Arzela Theorem// Proceedings of the Sixth Conference Function Spaces, 2003, P.106-113.
15. I.Bula, Discontinuous functions in Gale economic model .//Mathematical Modelling and Analysis, Vol. 8(2), 2003, P.93-102, Lietuva.
16.Bula, 2005, Strictly convex metric spaces with round balls and fixed points.// Orlicz Centenary Vol. II, Banach Center Publ., Vol. 68 (2005), P. 23-29.
17.I.Bula, J.Vīksna, Example of strictly convex metric spaces with not convex balls.// Int. J. of Pure and Applied Math., 2005, Vol. 25(1), P.87-93.
18. I.Bula, D.Rika, Arrow-Hahn economic models with weakened conditions of continuity// Game Theory and Math. Economics, Banach Center Publications, V. 71, 2006, P.47-61.
19. I.Bula, A.Vintere On the population model with a sine function// Mathematical Modelling and Analysis, Vol.11 (1), 2006, P.35-40.
20. I.Bula, On course of chaotic dynamics// Proceeding of TEACHING MATHE-MATICS: RETROSPECTIVE AND PERSPECTIVES, 7th international conference May 12 – 13, Tartu, 2006.
21. I.Bula, I.Rumbeniece, On chaotic maps in bi-infinite symbol space// Int.J. of Pure and Applied Mathematics, V.41(4), 2007, 481-497.
22. I.Bula, H.Lapiņa, Slide show in learning process// Proceeding of TEACHING MATHEMATICS: RETROSPECTIVE AND PERSPECTIVES, 8th international conference, Rīga, 2007, P.48-51.
23. I.Bula, Topologicsal semi-conjugacy and chaotic mappings// Proceedinggs of 6th EUROMECH Nonlinear Dynamics Conference (ENOC 2008), 2008, http://lib.physcon.ru/?item=1603
24. I.Bula, J.Buls, I.Rumbeniece, Why can we detect the chaos? //Journal of Vibroengineering, V.10, 2008, P.468-474.
25. I.Bula, J.Buls, I.Rumbeniece, On chaotic mappings in symbol space// Proceedings of 10th conference on Dynamical Systems – Theory and Applications, V.2., Lodz, Poland, December 7-10, 2009. P.955-962.
26. I.Bula, I.Rumbeniece, Construction of chaotic dynamical system// Mathematical Modelling and Analysis, Vol.15 (1), P.1-8, 2010.
27. I.Bula, On some chaotic mappings in symbol space// Proceedings of the 3rd International Conference on Nonlinear Dynamics, ND-KhPI2010, September 21-24, 2010, Kharkov, Ukraine, P.45-49.
28. I.Bula, J.Buls, I.Rumbeniece, On new chaotic mappings in symbol space// Acta Mechanica Sinica (Springer), V.27(1), P.114-118, 2011.
29. I.Bula, V.Duka, I.Liepiņa, Molecular modeling of protein as nonlinear dynamical system// Proceedings of the 2nd International Symposium on Rare Attractors and Rare Phenomena in Nonlinear Dynamics (ed. M.Zakrzhevsky), Rīga-Jurmala, Latvia, 2011, P. 81-84.
30. I.Bula, New class of chaotic mappings in symbol space// World Academy of Science, Engineering and Technology, V.67(4), 2012, P.305-309, pISSN 2010-376X, eISSN 2010-3778, https://www.waset.org/journals/waset/v67/v67-144.pdf
31. A.Anisimova, M.Avotina, I.Bula, Difference Equations and Discrete Dynamical Systems - Two Sides of One Whole// Proceeding of the 13th International Conference Teaching Mathematics: Retrospective and Perspectives, Tartu, Estonia, 2012.
32. A.Anisimova, M.Avotina, I.Bula, Periodic orbits of single neuron models with internal decay rate 0< beta <= 1// Mathematical Modelling and Analysis, Vol.18 (3), P.325-345, 2013.
33. A. Aņisimova, M.Avotiņa, I.Bula, Difference of Equations as a New Research Subject for Pupils// Proceeding of the 14th International Conference Teaching Mathematics: Retrospective and Perspectives, Jelgava, Latvia, ISBN 978-9984-48-146-3, P.5-15, 2013.
34. A. A.Anisimova, I.Bula, Some Problems of Second-Order Rational Difference Equations with Quadratic Terms// International Journal of Difference Equations, ISSN 0973-6069, V.9(1) 1, P. 11-21, 2014, http://campus.mst.edu/ijde/contents/v9n1p2.pdf
35. A. Aņisimova, M.Avotiņa, I.Bula, Periodic orbits of simple neuron models//ENOC 2014 - Proceedings of 8th European Nonlinear Dynamics Conference, Vienna, Austria, July 6-11, 2014 / eds.: H. Ecker, A. Steindl, S. Jakubek. Vienna : Institute of Mechanics and Mechatronics, Vienna University of Technology, 2014. ISBN 9783200034334. 6 p.
36. A. Aņisimova, M.Avotiņa, I.Bula, Periodic and Chaotic Orbits of a Neuron Model//Mathematical Modelling and Analysis V.20(1), P.30-52, 2015.
37. I.Bula, M.A.Radin, Periodic orbits of a neuron model with periodic internal decay rate//Applied Mathematics and Computation, V.266, P.293-303, 2015.
38. I.Bula, Periodic Solutions of the Second Order Quadratic Rational Difference Equation x(n+1) = ? /(1+x(n)x(n?1) // Difference Equations, Discrete Dynamical Systems and Applications : 18th International Conference on Difference Equations and Applications (ICDEA), Barcelona, Spain, July 2012 / eds. L. Alsed? i Soler, J. M. Cushing, S. Elaydi, A. A. Pinto (Springer Proceedings in Mathematics & Statistics). Berlin ; Heidelberg : Springer-Verlag, 2016 P.29-47. ISBN 9783662529270, SCOPUS
39. I.Bula, M. A.Radin, N.Wilkins, Neuron model with a period three internal decay rate // Electronic Journal of Qualitative Theory of Differential Equations N 46 (2017), p.[1]-19, WoS (Q1/Q2) URL: http://www.math.u-szeged.hu/ejqtde/p5439.pdf
14.11.2017.