Research interests:
Nonparametric and robust statistical methods, empirical liklelihood function, dependent time series data, mixing processes, goodness-of-fit tests, empirical processes, robust ANOVA and regression methods etc.
Publications:
J.Valeinis (2003). Neyman smooth test for dependent observations. Maģistra darbs.
J.Valeinis (2007). Confidence bands for structural relationship models. Disertācija (pieejama online
http://webdoc.sub.gwdg.de/diss/2007/valeinis/valeinis.pdf )
J.Valeinis (2008). Confidence bands for structural relationship models. VDM Verlag Dr. Mueller e.K. Germany.
H.Kārkliņa, Dž. Krūmiņa, G.Knipše, I.Kokare, J.Valeinis (2009).
Latvijas pirmsskolas un jaunākā skolas vecuma bērnu barojuma pakāpes izmaiņas 20. gadsimtā. LU raksti, medicīna, 750.sējums, 185.-194.lpp.
J.Valeinis, E.Cers, J.Cielēns (2010).
Two-sample problems in statistical data modelling.
Mathematical modelling and analysis, 15 (1), 137-151 (preprint) .
Suplementary R code and description
H.Kārkliņa, Dž.Krūmiņa, G.Knipše, I.Kokare, J.Valeinis. (2010).
The Changes in Body Height, Body Weight and BMI Values of Latvian Preschool Children During the Last Decade. LU raksti, medicīna , 755.sējums, 31.-40.lpp.
N.Sinenko, J.Valeinis (2010).
On comparison of univariate forecasting methods: the case of latvian residental property prices.
// Proceeding of the 10th International Conference APLIMAT’ 2011. Bratislava: Slovak University of Technology, Slovak Republic, 1637-1644.
preprint).
A.Munk, J-P. Stockis, J.Valeinis, G.Giese. (2011).
Neyman smooth goodness-of-fit tests for the marginal distribution of dependent data.
Annals of the Institute of Statistical Mathematics , 63 (5), 939-959.
(preprint).
J.Valeinis, A.Ločmelis (2012). Bickel-Rosenblatt test for dependent observations,
Mathematical modelling and analysis, 17 (3), 383-395.(preprint).
K. Ērglis, D. Zhulenkovs, M. Belovs, J. Valeinis, A. Cēbers. (2012).
Band formation by magnetotactic spirillum bacteria in oxygen concentration gradient.
Magnetohydrodynamics 48 (4), 607-614.
(abstract).
H. Karkliņa, Dz. Krumina, I. Ebela, J. Valeinis, G. Knipse. (2012).
A Cross-Sectional Research on the Height, Weight and Body Mass Index of Children
Aged 5–6 Years in Latvia and Its Secular Changes during the Last Century.
Central European journal of public health 21 (1), 3-7.
(abstract).
S. Vucane, J. Valeinis and G. Luta. (2013).
Confidence intervals for the mean based on exponential type inequalities and empirical likelihood.
ISRN Biomathematics vol. 2013, Article ID 765752, 8 pages, 2013. doi:10.1155/2013/765752.
(article).
J. Valeinis, E. Cers (2013).
Extending the two-sample empirical likelihood. (submitted, preprint).
Suplementary R code and description
J. Valeinis, M. Velina and G. Luta (2013).
Empirical likelihood-based inference for the difference of two location parameters using smoothed Huber M-estimators (submitted)
Conferences :
J. Valeinis, A. Munk, E. Cers (2008). Extending the two-sample
empirical likelihood method, Abstracts of the 7th World Congress in Probability and Statistics, Singapore, p.198
J. Valeinis (2008). Neyman tests for dependent data, Abstracts of the 22nd Nordic Conference on Mathematical Statistics, Vilnius, Lithuania, p.67
J. Valeinis (2008). Confidence bands for structural relationship models. Abstracts of the 7.Latvian Mathematical Conference, Rezekne, Latvia, p.47
J. Valeinis, E. Cers, J. Cielens (2009) Two-sample problems in statistical data modelling. Abstracts of the 14th International Conference
Mathematical Modelling and Analysis, Daugavpils, Latvia
J. Valeinis (2010). Recent trends in nonparametric statistics. Abstracts of the 8.Latvian Mathematical Conference, Rezekne, Latvia
J. Valeinis (2010) Goodness-of-fit tests for weakly dependent data. Abstracts of the 10th International Vilnius Conference on Probability and Mathematical
Statistics, Vilnius, Lithuania
J. Valeinis, M. Velina, G. Luta (2011). Empirical likelihood-based inference for the difference of smoothed Huber estimators, International conference on Robust Statistics 2011, Valladolid, Spain.
J. Valeinis (2011). Two-sample plug-in empirical likelihood method with applications to structural relationship model, 58th World Statistics Congress (ISI2011), Dublin, Ireland.
J. Valeinis (2011). Two-sample plug-in empirical likelihood method with applications to structural relationship model, 58th World Statistics Congress (ISI2011), Dublin, Ireland.
Valeinis J. (2012). Change-point analysis in time series, Abstracts of the 9.Latvian Mathematical Conference, Rezekne, Latvia.
J. Valeinis (2012). Two-sample blockwise empirical likelihood for weakly dependent data with applications to change-point analysis. Abstracts of the 8th World Congress in Probability and Statistics, Istanbul, Turkey. p.231.
M. Velina, J. Valeinis, G. Luta (2012). Empirical Likelihood-based Methods for the Difference of Two Trimmed Means, International conference on Robust Statistics 2012, Vermont, USA.
J. Valeinis, L. Januseva (2012). Confidence bands for general shift function. 17th International Conference on Mathematical Modelling and Analysis, Tallin, Estonia.
L. Pahirko, J. Valeinis (2012). „Empirical likelihood of survival data”. 17th International Conference on Mathematical Modelling and Analysis, Tallin, Estonia.
I. Dasmane, J. Valeinis (2012). Long memory parameter estimation using several wavelet based methods, 17th International Conference on Mathematical Modelling and Analysis, Tallin, Estonia.
J. Valeinis, S. Vucane (2013). Robust two-sample empirical likelihood tests with applications to change-point analysis, Saint Petersburg, Russia.
M. Velina, J. Valeinis and G. Luta (2013). Robust inference using empirical likelihood based ANOVA methods, Saint Petersburg, Russia.
J. Valeinis, B. Opermans (2013). Some multivariate goodness-of-fit tests, 18th International Conference on Mathematical Modelling and Analysis, Tartu, Estonia.
S. Vucane, J. Valeinis (2013). Two-sample blockwise empirical likelihood, 18th International Conference on Mathematical Modelling and Analysis, Tartu, Estonia.
M. Velina, J. Valeinis (2013). Empirical likelihood based robust inference for trimmed means, 18th International Conference on Mathematical Modelling and Analysis, Tartu, Estonia.
S. Barvika, T. Tambovceva un J. Valeinis (2013). Theoretical aspects of possible improvements to the mass valuation model in Latvia. Riga Technical University 54th international scientific conference, Riga Technical University, Riga.
J. Valeinis (2013). Robustas un neparametriskas metodes statistisko datu apstrādei. Latvijas Universitātes ERAF projekta „Skolas vecuma bērnu redzes un redzes uztveres traucējumu pētīšana un diagnostikas metodiku izstrāde” noslēguma zinātniskā conference, Latvijas Universitāte, Rīga.